网站大量收购独家精品文档,联系QQ:2885784924

TensorToolbox手册范本.doc

  1. 1、本文档共9页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
WORD格式 可编辑 专业知识整理分享 Tensor Toolbox for dense, sparse, and decomposed n-way arrays. cp_als - Compute a CP decomposition of any type of tensor. ALS交替最小二乘法求张量CP分解 P = CP_ALS(X,R)——计算张量X秩为R的最佳近似CP分解,P=[P.lambda, P.U] P = CP_ALS(X,R,param,value,...)选择参数设置 tol - Tolerance on difference in fit {1.0e-4} maxiters - Maximum number of iterations {50} dimorder - Order to loop through dimensions {1:ndims(A)} init - Initial guess [{random}|nvecs|cell array] printitn - Print fit every n iterations; 0 for no printing {1} [P,U0,out] = CP_ALS(...) also returns additional output that contains the input parameters. Note: The fit is defined as 1 - norm(X-full(P))/norm(X) and is loosely the proportion of the data described by the CP model, i.e., a fit of 1 is perfect. % Examples: % X = sptenrand([5 4 3], 10); % P = cp_als(X,2); % P = cp_als(X,2,dimorder,[3 2 1]); % P = cp_als(X,2,dimorder,[3 2 1],init,nvecs); % U0 = {rand(5,2),rand(4,2),[]}; %-- Initial guess for factors of P % [P,U0,out] = cp_als(X,2,dimorder,[3 2 1],init,U0); % P = cp_als(X,2,out.params); %-- Same params as previous run 交替泊松回归求张量X的非负CP分解 cp_apr - Compute nonnegative CP with alternating Poisson regression. M = CP_APR(X, R) computes an estimate of the best rank-R M = CP_APR(X, R, param, value, ...) specifies optional parameters and values. Valid parameters and their default values are: tol - Tolerance on the inner KKT violation {1.0e-4} maxiters - Maximum number of iterations {1000} maxinneriters = Maximum number of inner iterations {10} init - Initial guess [{random}|ktensor] epsilon - parameter to avoid divide by zero {100*eps} kappatol - tolerance on complementary slackness {100*eps} kappa - offset to fix complementary slackness {10*eps} printitn - Print every n outer iterations; 0 for no printing {1} printinneritn - Print every n inner iteratio

文档评论(0)

文档分享 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档