An Introduction of Independent Component Analysis (ICA):独立分量分析(ICA)的介绍.ppt

An Introduction of Independent Component Analysis (ICA):独立分量分析(ICA)的介绍.ppt

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
An Introduction of Independent Component Analysis (ICA):独立分量分析(ICA)的介绍

An Introduction of Independent Component Analysis (ICA) Xiaoling Wang Jan. 28, 2003 What Is ICA? Application: blind source separation (BSS) and deconvolution Motivation: “cocktail party problem” Assumption: two people speaking simultaneously, two microphones in different locations Principles of ICA Algorithm Assumption: sources are statistically independent Goal: it seeks a transformation to coordinates in which the data are maximally statistically independent Definition: Hierarchy of ICA Models Independence of Sources Independence: the pdf of sources can be factorized Nongaussian is independent Seek the separation matrix W which maximize the nongaussianity of the estimated sources Measures of Nongaussianity Kurtosis (4th order cumulant): Subgaussian: negative kurtosis Supergaussian: positive kurtosis Negentropy: Measures of Nongaussianity (Cont.) Mutual information: FastICA Algorithm Basic form: Choose an initial (e.g. Random) weight vector Let Let If not converged, go back to step 2 For several units: decorrelation Let Let Nonlinear ICA Model: Existence and uniqueness of solutions There always exists an infinity of solutions if the space of the nonlinear mixing functions is not limited Post-nonlinear problem Algorithms for Nonlinear ICA Burel’s approach: neural solution, known nonlinearities on unknown parameters Krob Benidir: high order moments, polynomial mixtures Pajunen et al.: SOMs, locally factorable pdf Pajunen et al.: GTM(generative topographic mapping), output distribution matches the known source distributions Post nonlinear mixtures: Taleb Jutten: adaptive componentwise separation Yang et al.: two-layer neural network Puntonet et al.: nonlinearities are a power function, geometrical considerations * * Mixing process Demixing process – mixing matrix, – separation matrix Nonlinear mixing Linear mixing Classical ICA Flexible Source model Infomax Non-stationary sources Non-stationary mixing No noise Factor Analysis R diagonal Gaussian sou

您可能关注的文档

文档评论(0)

allap + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档