- 1、本文档共10页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
专业资料分享
完美DOC格式整理
磁制冷材料研究进展
姓名:王永莉
学号: 单位:有色院
磁制冷材料研究进展
摘要:本文介绍了磁制冷的历史,原理,研究现状,概述了几种室温磁制冷材料的研究进展及研究成果,分析了磁制冷技术面临的问题及今后的发展趋势。
关键词:磁制冷;室温磁制冷材料;发展趋势
1 引言
随着全球温室效应的加剧,全球变暖越来越引起人们的关注,人们也越来越重视环境保护。从1989年起,蒙特利尔协议的生效,以氟利昂为主的传统制冷剂因会破坏臭氧层,导致温室效应而逐渐被禁用。具有环境友好,高效率的新型制冷技术迅猛发展,如:半导体制冷,磁制冷,电制冷等[1]。磁制冷技术是以磁性材料为工质,借助材料本身的磁热效应来制冷的一种绿色技术,制冷效率高达传统气体制冷的5~10 倍,可以显著节省能源;而且固态磁制冷材料的熵密度远大于气体,制冷机体积较小,不需要大幅度的气体压缩运动,运行平稳可靠;更为重要的是该技术无氟利昂、氨等制冷剂,无环境污染。目前在超低温领域中,利用原子核去磁制冷原理制取液化氦、氮、氢已得到广泛应用。在室温制冷方面,磁制冷有望在空调、冰箱等方面获得商业应用,成为未来最有发展前景的一种新型制冷技术[2]。
2 磁制冷的历史
1881年Warburg首先观察到金属铁在外加磁场中的热效应。1907年,Langevin第一次展示通过改变顺磁材料的磁化强度导致可逆温度变化。1926年Debye,1927年Giuque两位科学家分别从理论上推导出可以利用绝热去磁制冷的结论后,极大地促进了磁制冷的发展。1933年Giauque等人以顺磁盐Gd2(SO4)3·8H2O为工质成功获得了1K以下的超低温,从此,在超低温范围内,磁制冷发挥了很大的作用,一直到现在这种超低温磁制冷技术已经很成熟。随着磁制冷技术的迅速发展,其研究工作也逐步从低温向高温发展。1976年,美国NASA Lewis和G.V.Brown首先采用金属Gd为磁制冷介质,采用Stiring循环,在7T磁场下进行了室温磁制冷试验,开创了室温磁制冷的新纪元,人们开始转向寻找高性能的室温磁致冷材料的研究[3]。
3 磁制冷原理
3.1 磁熵理论
磁致冷是利用磁性材料的磁熵变化过程中吸热和放出热的制冷方式。从热力学观点看,磁致冷物质由自旋体系、晶格体系和传导电子体系组成,它们除了各自具有的热运动以外,各体系间还存在着种种相互作用,并且进行着热交换。当磁性工质达到热平衡状态时,各体系的温度都等于磁性工质的温度。磁性工质的熵为磁熵、晶格熵和电子熵的总和。在不考虑压力影响的情况下,磁性材料的其热力学性质可用吉布斯函数G(M,T)来描述(磁场为H,温度为T,压力为P)[4]。
体系的吉布斯函数进行微分可得到熵:
S(H,T)= -(?G/?T)H (1)
磁化强度:
M(H,T) = -(?G/?H)T (2)
熵的全微分:
dS = (?S/?T)HdT + (?S/?H)TdH (3)
在恒磁场下定义磁比热CH:
CH = T(?S/?T)H (4)
由方程(1)(2)可得:
(?S/?H)T = (?M/?T)H (5)
将(4)(5)带入(3)得:
dS =(CH/T)dT + (?M/?T)HdH (6)
对方程(6):
(i)绝热条件下,dS = 0
dT = -(T/CH) (?M/?T)HdH (7)
(ii)等温条件下,dT = 0
dS = (?M/?T)HdH (8)
(iii)等磁场条件下,dH = 0
dS =(CH/T)dT (9)
如能通过实验测得M(T,H)和CH(H,T),则根据方程可确定ΔT及ΔSM。
3.2 磁制冷循环的原理
磁致冷循环的制冷循环如图1所示。磁致冷材料的磁矩在无外加磁场情况下处于无序状态,磁熵较大;当磁致冷材料绝热磁化时,磁矩在磁场作用下与外磁场平行,磁有序度增加,磁熵值降低,向外界放出热量(类似于气体压缩放热的情形);相反,当磁致冷材料绝热去磁时,材料的磁矩由于原子或离子的热运动又回复到随机排列的状态,磁有序度降低,磁熵增加,材料从外界吸收热量,使外界温度降低(类似
文档评论(0)