网站大量收购闲置独家精品文档,联系QQ:2885784924

话题检测与跟踪算法改进分析-计算机应用技术专业论文.docxVIP

话题检测与跟踪算法改进分析-计算机应用技术专业论文.docx

  1. 1、本文档共57页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
话题检测与跟踪算法改进分析-计算机应用技术专业论文

华中科技大学硕士学位论文 华 中 科 技 大 学 硕 士 学 位 论 文 II II Abstract With the rapid development of the Internet ,the Internet information shows explosive growth .Effective organization and management of these information has become more difficult and it often appears the phenomenon of information overload .For effectively organizing and managing these information ,topic detection and tracking technology came into being .For a variety of news report of information flow ,detecting new topics and tracking the follow-up reports of known topics are the main purpose . According to the characteristics of the topic detection, hierarchical clustering is used to detect topics where it doesn’t set the number of categories when clustering. Hierarchical clustering can well adapt to needs of topic detection, and on this basis named entity has high-sensitive characteristics in the topic report. Increasing the weight value of the named entity in the calculation can improve overall system performance during similarity calculation. The experiments in the existing corpus and experimental data show that the improvement on the similarity calculation improve the rate of correct of topic detection and reduce system spending. When commonly used traditional K-nearest neighbor algorithm is applied to track the topics ,it requires balance between the reported number of topic and this shortcoming will cause the topic to offset to a certain extent. Support vector machine algorithm is used in the training phase of K-nearest neighbor algorithm to determine support vector to replace the value of K and it can eliminate the dependence of value of K. It decreases topic offset problems because of uneven between the reported number of topic. Experimental results show that to a certain extent these methods improve the performance of topic tracking and it tests and verifies that the correct rate of improved K-nearest neighbor algorithm isn’t affected by parameter K. Key words: topic detection, topic tracking, hierarchica

您可能关注的文档

文档评论(0)

131****9843 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档