基于SVM的电子邮件分类系统研究-计算机软件与理论专业论文.docxVIP

基于SVM的电子邮件分类系统研究-计算机软件与理论专业论文.docx

  1. 1、本文档共102页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于SVM的电子邮件分类系统研究-计算机软件与理论专业论文

山东师范大学硕士学位论文速度,还要对特征词筛选方法进行系统研究,挑选出最适合邮件过滤的特征项选择方法, 山东师范大学硕士学位论文 速度,还要对特征词筛选方法进行系统研究,挑选出最适合邮件过滤的特征项选择方法, 为提高分类效果需要广泛收集邮件样本进行训练。论文肯定还有许多不完善的地方,相 关工作还有待进一步研究。 关键词二电子郎件;支持向量机;分类;特征选择 分类号:TP391,1 山东师范大学硕士学位论文The 山东师范大学硕士学位论文 The Research of Email Classification Based on SVM ABSTRACT E-mail is the most widely used Intemet application,the most popular network functions. With the popularity‘of information technology.It has now evolved into a much more complex and rich system allow the transmission of voice,pictures,i。mages,multimedia files and other information.Report on the accounts or even if the database can be circulated on the Intemet in theform of e.mail attachments.Now,e-mail has become the life blood of many businesses and organizations.Users carl manage project through e—mail discussions.Sometimes under the fast or the exchange of intercontinental e-mail messages we make our decisions.However,wi也all increase in the number of e-mail,how t‘o effective classify e-mail and filter out spam bothers many people. Support Vector Machine is a new generation of learning machines based on statistical learning theory.It has many attractive features and its ability to:function,learning ability and efl]ciency mnst be superior 10 the traditional artificial neural networks.The past 1 0 years, Vapnik and his colleagues put。forward SVM algorithm based on statistical learning theory.In small samples,nonlinear and high-dimensional pattern recognition it has some unique advantages.The method can also be applied to other maeh.ine learning problems.Many scholars believe that it is becoming hot new field of machine learning after pattem recognition and neural network.SVM will promote a significant development on machine learning theory and technology.SLT and SVM made encouraging progress 011 application of the kernel in dewing 、Ⅳi血the small sample problem.It has been the best learning theory on the small sample statistical estimates and forecast study. This essay research on email classif

您可能关注的文档

文档评论(0)

131****9843 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档