- 1、本文档共79页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于SVM并考虑温度累积效应的电力短期负荷预测方法-计算机应用技术专业论文
Abstract
Power short-term load forecasting is very important for energy optimal scheduling and planning of the electricity market. Now the electricity business from a planned economy monopoly model transform into a market economy competitive business model, and power energy supplying is tight, so an accurate load forecasting is crucial. The principle of similar-days algorithm is simple, and it is an effective way for improving the forecasting effect of short-term load forecasting by rationally choosing similar days. In recent years, Support Vector Machine (SVM) algorithm has been rapidly developed. It is a new machine learning algorithm, and it bases on the statistical learning theory. SVM is based on structural risk minimization, so it can achieve the minimum actual risk. It can be used to solve the problem of small sample, and has good generalization performance. It has been widely employed in the short term load forecasting.
This paper is elaborated the forms of the accumulation effect of temperature based on fully analyzing the basic characteristics of short-term load. The summer accumulation effect of temperature is reflected by modifying the daily maximum temperature. The
selected similar days,which are based on the modifying temperature, can be used to
forecast the load in the next day. The work of the paper is following:
The load characteristics of an area of Hubei province are detailed analysis from the time, meteorological and day types, etc. The advantages and disadvantages and modeling performance of three common forecasting methods (Time Series Analysis method, Neural Network method and Support Vector Machine method) are summarized, and the conclusion is that Support Vector Machine (SVM) method is more suitable for the study of short-term load forecasting.
For the problem that the prediction accuracy isn’t ideal of Support Vector Machine method when the accumulation effect of temperature appears, a similar selection algorithm considering the accumulati
您可能关注的文档
- 基于STUN协议的NAT穿越技术研究-通信与信息系统专业论文.docx
- 基于SUMO的公交信号优先仿真系统设计-交通信息工程及控制专业论文.docx
- 基于SUMO车载自组织网络路由协议的研究与实现-信号与信息处理专业论文.docx
- 基于SUMS公司核心业务绩效评估体系的研究-工商管理专业论文.docx
- 基于STS模块的光谱测试系统研究-电子与通信工程专业论文.docx
- 基于SUIF2的过程间分析和优化-计算机系统结构专业论文.docx
- 基于SUMO仿真的典型城市信号交叉口改进方案及其评价-交通信息工程及控制专业论文.docx
- 基于ST损伤向量的心肌缺血程度与部位的罗盘显示-机械电子工程专业论文.docx
- 基于Supermap Objects的城市信息管理系统的设计-市政工程专业论文.docx
- 基于ST壳资源价值重组利用的绩效研究政治经济学专业论文.docx
文档评论(0)