基于Spark的模糊时间序列预测模型研究-计算机技术专业论文.docxVIP

基于Spark的模糊时间序列预测模型研究-计算机技术专业论文.docx

  1. 1、本文档共75页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于Spark的模糊时间序列预测模型研究-计算机技术专业论文

AbstractIn Abstract In recent years,with the development of electronic devices,sensors and storage service,a large amount of dam has been accumulated in many domains such aS finance and medicine,leading to various requirements of data process application,and big data technology has attracted widespread attention from people from all walks of life.As stock market thrives,the scale of stock time—series data grows continually,not only in the length of series,but also in the number of series.Therefore,it is difficult for people to analyze,understand and process. For the prediction of financial time—series data,the model based on fuzzy time series and the genetic algorithm Can forecast several stock indexes with a high degree of accuracy.Fuzzy Logic applies explicit fuzzy rule definition to direct its prediction, with the result that output varies more smoothly when input is changed sharply. Genetic Algorithm is used to search the reasonable fuzzy set boundaries,improving the quality of solutions by evolutionary operators until convergence is seen.However, to our knowledge,there is hardly any research about models of fuzzy time series on Spark,which is large—scale data processing engine.In the face of arrival of the age of big data,we urgently need to integrate fuzzy time series forecasting method into cluster computing. The core work of this paper contains the following three parts qlb begin with,since the most time·consuming portion of the prediction model is in genetic algorithmj when time—series data i s massive,it is inefficient to the algorithm it.In this paper,three versions of parallel genetic algorithm based Spark were described Secondly,the above three parallel genetic algorithm models implemented on Spark,and models tested on small—scale and large-scale SAT problem benchmark separately to do comparison with the difference in convergence,optimal solution, running time and scalability Finally,parallel single—series prediction model and parallel multi—series pre

文档评论(0)

131****9843 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档