基于RBF神经网络的机械臂运动控制算法及应用研究-控制理论与控制工程专业论文.docxVIP

基于RBF神经网络的机械臂运动控制算法及应用研究-控制理论与控制工程专业论文.docx

  1. 1、本文档共75页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于RBF神经网络的机械臂运动控制算法及应用研究-控制理论与控制工程专业论文

基于 RBF 神经网络的机械臂运动控制算法及应用研究 兰州交通大学硕士学位论文 万方数据 万方数据 类方法相比,基于EC-RBF学习算法的RBFNN在机械臂轨迹跟踪控制中跟踪效果更好。 关键词:径向基函数神经网络;熵聚类;模型参考自适应控制;机械臂;轨迹跟踪 论文类型:应用基础研究 - II - Abstract Trajectory tracking control of robot manipulator is the important part in its motion control. Control system of robot manipulator is a multi-variable, strong coupling, and highly nonlinear uncertain systems, trajectory tracking requires the robot manipulator to move according to a desired trajectory that has been given. Model reference adaptive control (MARC) based on radial basis function neural networks (RBFNN) not only has strong capability of dynamic approximation and adaptive by RBFNN, but also could improve the control real-time and immunity interference immunity, thus it has been used in nonlinear control widely. But the traditional learning algorithm of RBFNN, based on K-means clustering, is very sensitive to algorithm initial value, and it also demands that the number of all input samples and RBF should be given in advance. For this sensitivity problem of initial value, the thesis improves the learning algorithm of RBFNN based on K-means clustering, and uses a learning algorithm based on entropy clustering-radial basis function (EC-RBF) to train the RBFNN. Through adopting this new method, neural Networks solution of robot manipulator inverse kinematics is achieved. Using this method to train the two RBFNN that the neural Networks model reference adaptive control system of robot manipulator includes, the dynamic model identification and trajectory tracking control of unknown robot manipulator are implemented. Comparing with the traditional K-means clustering algorithm, the simulation result indicates that this improvement algorithm is more effective and superior. The main contents are below: To study the basic theory and structure of RBFNN, and study the 1improvement learning algorithm EC-RBF, which is based on entropy clustering of RBFNN. Using the entropy clustering, the initial value of traditiona

您可能关注的文档

文档评论(0)

131****9843 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档