基于RBF神经网络的手绘电气草图识别研究-计算机应用技术专业论文.docxVIP

基于RBF神经网络的手绘电气草图识别研究-计算机应用技术专业论文.docx

  1. 1、本文档共66页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于RBF神经网络的手绘电气草图识别研究-计算机应用技术专业论文

器均采用 RBF 神经网络。第一级分类器用作预分类,第二级分类器用作细分类。 预分类采用一个 RBF 神经网络,用一级特征作为预分类的输入特征向量;细分 类采用三个 RBF 神经网络,用二级特征作为细分类的输入特征向量。并通过实 验验证了这种分类系统的有效性。 关键词:手绘电气草图在线识别;特征提取和选择;RBF 神经网络;分类器; 聚类 Abstract Due to the advantage of simple, fast and conveniently storage, CAD technology plays an irreplaceable role in various fields designing. It can greatly enhance the qua l- ity of design, reduce the design cycle, share device resources and s trengthen data han- dling capacity. But CAD technology is mainly applied in early stages of design and has no role in catching inspiration and thinking exploration. It can’t meet the needs of early stage designing. But paper sketches have their own disadvantage too. It lack of “designed memory”; hard to storage, arrange, search and reuse, especially lack of va- lid capability of interaction and alternation. For this reason, to study a sort of design tool that can combine paper-and-pencil hand-drawn sketch with computer is the hope of designers and is of great significance. Electric circuit diagram design is an impor- tant field of CAD technology. The thesis pointed against the defects of CAD technology to study thoroughly on- line recognition of hand-drawn electronic component symbol and make research and experiments on the key component of on- line hand-drawn electronic component symbol. The main part works as follows: 1. A two levels hand-drawn electronic component symbol feature selection and extraction method that aimed at RBF(Radial Basis Function) neural networks is stu- died in this thesis. Structural feature and relationship feature of hand-drawn electronic component symbol are defined in this thesis. Moreover, the definitions are applied in the feature extraction of hand-drawn electronic component symbol. Feature extraction and selection is the most crucial element in recognition of hand-drawn electronic component symbol, which affects directly recognition effect. This thesis used RBF neural networks which have the best approximation capability

文档评论(0)

131****9843 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档