- 1、本文档共16页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
海洋平台结构健康检测方法综述
摘要
海洋平台由于其重量大,结构复杂,并且长期处于苛刻的腐蚀性环境和多种荷载作用的条件下,其结构健康监测问题已经成为了避免环境灾害以及经济损失、确保安全健康服役所必需面临的问题。通过对海洋平台健康监测问题的深入研究,总结了近些年来各位专家学者对海洋平台结构检测问题的研究现状,归纳了海洋平台健康监测的研究方向,并介绍了海洋平台健康监测的新方法,对海洋平台健康监测的存在的问题和发展的方向做出了总结。
关键词:海洋平台 健康监测 振动响应 新方法
引言
随着世界经济迅猛发展,石油天然气的需求量猛增,然陆地的油气供给能力有限,海洋中又蕴藏着丰富的油气资源,所以,海洋油气资源的开发势在必行。海洋平台作为海上油田开发的主要设备,其投资占到了海洋石油开采总投资的70%左右,一旦发生事故,不仅会带来重大的经济损失和人身伤亡,而且还会带来不良的社会政治影响。其目前所面临的问题主要有:海洋平台重量大而其结构复杂,长周期在苛刻的腐蚀性环境条件下使用的大型工程结构物,其水下部分结构长期受到海水及海生物的侵蚀、冻融损坏、碱集料反应和化学物质侵袭、地基冲刷、环境载荷等的作用,使得结构的承载力会随着时间推移而降低。特别是钢结构腐蚀病害而引起的平台耐久性问题,已成为一个突出的灾害性问题;海啸、台风,过往船只撞击海洋平台、火灾、天然气泄漏发生爆炸等偶然事件时有发生,极大威胁着平台的正常使用和耐久性;半潜式平台的浮体与柱、柱与甲板连接处,张力腿平台的浮体与柱、张力腿与浮体连接处以及支撑半潜式、张力腿甲板的刚架结构均是受力极大的危险区域,如果结构不连续、加工或焊接上的缺陷,易形成应力集中,焊接残余应力也会造成材料的局部塑性变形,这样在交变载荷、海水腐蚀等作用下,接头的高应力危险区将会发生疲劳裂纹,并逐渐扩大而导致整个节点的破坏。另外,由于平台所采用的材料往往含有微小的缺陷,在循环荷载作用下,这些微缺陷(微裂纹和微孔洞)会成核,发展及合并形成损伤,并逐步在材料中形成宏观裂纹。疲劳损伤是平台设计中的核心问题,已经发生不少海洋平台由于结构连接节点处出现疲劳破坏而引起垮塌的案例。早期疲劳损伤往往不易被监测到,但其带来的后果是灾难性的。
1969年我国渤海2号平台被海冰推倒,并使一号平台严重受损,造成直接经济损失2000多万元 ;1974年海冰推倒了渤海四号平台的烽火台;我国从日本进口的“渤海二号”自升式平台,1979年在渤海湾倾覆沉没,死亡72人;我国“爪哇海” (GlomarJavasea)钻井船,1983年在南海的莺歌海海域沉没,死亡81人。2001年当时世界上最大的半浮动式海上油井平台,巴西P一36号平台沉入大西洋,该平台耗资3.6亿美元,仅事故造成的油井停产就使巴西每天损失300多万美元,该平台的沉没给巴西造成了巨大的经济损失和环境污染问题。2005年3月15日巴西Roneador油田(离巴西12okm,水深135om,储量30亿桶)的采油平台因天然气泄漏,发生三次爆炸,虽经现场26艘船多日施救,但在3月20日晚上9点30分翻转900,沉人海底。
考虑到安全、环保和经济效益等各方面的因素:一方面不可能大量地拆除旧平台
而改建新平台;另一方面,还缺乏一整套有效的平台监测和管理系统,帮助管理者维护平台。由此,海洋平台健康监测十分重要。
随着石油开采向海洋发展,海洋平台的数量成倍增加,合适的设计方法确保结构能够抵抗住不可预测的载荷造成的损伤,但是损伤在海洋平台结构的服役期间是不可避免的。结构健康监测技术实际就是传统结构动力学问题的逆问题,通过对结构物进行实时、无损监测全面评估结构物损伤的技术。确保人的生命安全和减少财产损失的唯一方法是诊断出结构的损伤,并能及时进行修复。由此可见,提高海洋平台结构及设备的可靠性,确保海洋作业安全的问题日益突出,新平台的质量评价、旧平台的残余寿命估计和在役平台的结构安全保证将成为日益突出的问题,海洋平台结构的健康监测与损伤诊断已成为刻不容缓的重要课题,而且,这一技术的发展将带动陆地重大工程结构健康监测技术的发展和应用,具有广阔的应用前景。
1海洋平台结构健康监测技术
1.1海洋平台健康监测现状
海洋平台健康监测的研究开始于 20 世纪 70 年代,研究领域主要涉及裂纹、腐蚀以及结构应力与变形的监测等[1]。Vandiver[2]和 Begg[3]利用固有频率的变化分别研究了一个由船只碰撞引起的钢桩支撑的近海灯塔的损伤监测结果和一个 4.8 米高的北海平台模型的测试结果。Lolnad 和 Dodds[4]对三个北海平台开展了为期 6-9 个月的声发射监测,以监测结果为基础,深入研究了平台的状态设置、形状、周围环境对结果的影响以及系统的耗费。研究发现,谱的变化都在 3%以内。Osegueda[5]
文档评论(0)