Deep unsupervised learning on a desktop PC a primer for connitive scientist外文电子书籍.pdf

Deep unsupervised learning on a desktop PC a primer for connitive scientist外文电子书籍.pdf

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
METHODS ARTICLE published: 06 May 2013 doi: 10.3389/fpsyg.2013.00251 Deep unsupervised learning on a desktop PC: a primer for cognitive scientists 1 1 1 1,2 Alberto Testolin *, Ivilin Stoianov , Michele De Filippo De Grazia and Marco Zorzi * 1 Computational Cognitive Neuroscience Lab, Department of General Psychology, University of Padova, Padova, Italy 2 IRCCS San Camillo Neurorehabilitation Hospital, Venice Lido, Italy Edited by: Deep belief networks hold great promise for the simulation of human cognition because Christoph T. Weidemann, Swansea they show how structured and abstract representations may emerge from probabilistic University, UK unsupervised learning. These networks build a hierarchy of progressively more complex Reviewed by: Bradley Love, University College distributed representations of the sensory data by fitting a hierarchical generative model. London, UK However, learning in deep networks typically requires big datasets and it can involve mil- Simon Farrell, University of Bristol, UK lions of connection weights, which implies that simulations on standard computers are *Correspondence: unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would Alberto Testolin and Marco Zorzi, therefore seem to require expertise in programing

文档评论(0)

独角戏 + 关注
实名认证
内容提供者

本人有良好思想品德,职业道德和专业知识。

1亿VIP精品文档

相关文档