巨磁电阻实验报告..docx

  1. 1、本文档共19页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
实 验 报 告 物理与电子系 物理升华专业1201班 姓名 张 涛 学号1003120505 指导老师 徐富新 实验时间2014年5月25日,第十三周,星期日 实验名称巨磁电阻效应及其应用 【目的要求】 了解GMR效应的原理 测量GMR模拟传感器的磁电转换特性曲线 测量GMR的磁阻特性曲线 用GMR传感器测量电流 用GMR梯度传感器测量齿轮的角位移,了解GMR转速(速度)传感器的原理 【原理简述】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律 R=?l/S中,把电阻率?视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。 图3是图2结构的某种GMR材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减小,进入磁饱和区域。磁阻变化率 ΔR/R 达百分之十几,加反向磁场时磁阻特性是对称的。注意到图2中的曲线有两条,分别对应增大磁场和减小磁场时的磁阻特性,这是因为铁磁材料都具有磁滞特性。 有两类与自旋相关的散射对巨磁电阻效应有贡献。 其一,界面上的散射。无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,从一层铁磁膜进入另一层铁磁膜时都面临状态改变(平行-反平行,或反平行-平行),电子在界面上的散射几率很大,对应于高电阻状态。有外磁场时,上下两层铁磁膜的磁场方向一致,电子在界面上的散射几率很小,对应于低电阻状态。 其二,铁磁膜内的散射。即使电流方向平行于膜面,由于无规散射,电子也有一定的几率在上下两层铁磁膜之间穿行。无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,在穿行过程中都会经历散射几率小(平行)和散射几率大(反平行)两种过程,两类自旋电流的并联电阻相似两个中等阻值的电阻的并联,对应于高电阻状态。有外磁场时,上下两层铁磁膜的磁场方向一致,自旋平行的电子散射几率小,自旋反平行的电子散射几率大,两类自旋电流的并联电阻相似一个小电阻与一个大电阻的并联,对应于低电阻状态。 多层膜GMR结构简单,工作可靠,磁阻随外磁场线性变化的范围大,在制作模拟传感器方面得到广泛应用。在数字记录与读出领域,为进一步提高灵敏度,发展了自旋阀结构的GMR。 【实验装置】 巨磁电阻实验仪 区域 区域1 区域2 区域3 图5 巨磁阻实验仪操作面板 图5所示为巨磁阻实验仪系统的实验仪前面板图。 区域1——电流表部分:做为一个独立的电流表使用。 两个档位:2mA档和200mA档,可通过电流量程切换开关选择合适的电流档位测量电流。 区域2——电压表部分:做为一个独立的电压表使用。 两个档位:2V档和200mV档,可通过电压量程切换开关选择合适的电压档位。 区域3——恒流源部分:可变恒流源。 实验仪还提供GMR传感器工作所需的4V电源和运算放大器工作所需的±8V电源。 基本特性组件 图6 基本特性组件 基本特性组件由GMR模拟传感器,螺线管线圈及比较电路,输入输出插孔组成。用以对GMR的磁电转换特性,磁阻特性进行测量。 GMR传感器置于螺线管的中央。 螺线管用于在实验过程中产生大小可计算的磁场,由理论分析可知,无限长直螺线管内部轴线上任一点的磁感应强度为: B = μ0nI (1) 式中n为线圈密度,I为流经线圈的电流强度,为真空中的磁导率。采用国际单位制时,由上式计算出的磁感应强度单位为特斯拉(1特斯拉=100

文档评论(0)

jiayou10 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8133070117000003

1亿VIP精品文档

相关文档