- 1、本文档共11页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
WORD格式可编辑
专业知识分享
一 需求分析
1.本程序演示的是用简单遗传算法随机一个种群,然后根据所给的交叉率,变异率,世代数计算最大适应度所在的代数
2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的命令;相应的输入数据和运算结果显示在其后。
3.测试数据
输入初始变量后用y=100*(x1*x1-x2)*(x1*x2-x2)+(1-x1)*(1-x1)其中-2.048=x1,x2=2.048作适应度函数求最大适应度即为函数的最大值
二 概要设计
1.程序流程图
开始
开始
Gen=0
编码
随机产生M个初始个体
满足终止条件?
计算群体中各个体适应度
从左至右依次执行遗传算子
j = 0
j = 0
j = 0
根据适应度选择复制个体
选择两个交叉个体
选择个体变异点
执行变异
执行交叉
执行复制
复制的个体添入新群体中
交叉后添入新群体中
变异后添入新群体中
j = j+1
j = j+2
j = j+1
Gen=Gen+1
输出结果
终止
Y
N
Y
Y
Y
N
N
N
pc
pm
2.类型定义
int popsize; //种群大小
int maxgeneration; //最大世代数
double pc; //交叉率
double pm; //变异率
struct individual
{
char chrom[chromlength+1];
double value;
double fitness; //适应度
};
int generation; //世代数
int best_index;
int worst_index;
struct individual bestindividual; //最佳个体
struct individual worstindividual; //最差个体
struct individual currentbest;
struct individual population[POPSIZE];
3.函数声明
void generateinitialpopulation();
void generatenextpopulation();
void evaluatepopulation();
long decodechromosome(char *,int,int);
void calculateobjectvalue();
void calculatefitnessvalue();
void findbestandworstindividual();
void performevolution();
void selectoperator();
void crossoveroperator();
void mutationoperator();
void input();
void outputtextreport();
4.程序的各函数的简单算法说明如下:
(1).void generateinitialpopulation ()和void input ()初始化种群和遗传算法参数。
input() 函数输入种群大小,染色体长度,最大世代数,交叉率,变异率等参数。
(2) void calculateobjectvalue();计算适应度函数值 。
根据给定的变量用适应度函数计算然后返回适度值。
(3)选择函数selectoperator()
在函数selectoperator()中首先用rand ()函数产生0~1间的选择算子,当适度累计值不为零时,比较各个体所占总的适应度百分比的累计和与选择算子,直到达到选择算子的值那个个体就被选出,即适应度为fi的个体以fi/∑fk的概率继续存在;
显然,个体适应度愈高,被选中的概率愈大。但是,适应度小的个体也有可
能被选中,以便增加下一代群体的多样性。
(4)染色体交叉函数crossoveroperator()
这是遗传算法中的最重要的函数之一,它是对个体两个变量所合成的染色体进行交叉,而不是变量染色体的交叉,这要搞清楚。首先用rand ()函数产生随机概率,若小于交叉概率,则进行染色体交叉,同时交叉次数加1。这时又要用rand()函数随机产生一位交叉位,把染色体的交叉位的后面部分交叉即可;若大于交叉概率,则进行简单的染色体复制即可。
(5)染色体变异函数mutation()
变异是针对染色体字符变异的,而不是对个体
文档评论(0)