通信系统与铁路理论文.docVIP

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
通信系统与铁路理论文

通信系统与铁路管理论文   1LTE无线宽带通信系统   LTE是一项宽带无线通信技术,具有数据速率更高、成本更低、时延更短以及覆盖质量、系统容量更好的特点。LTE是铁路更早使用的GSM-R数字通信技术升级版的系统技术,与未来无线通信系统宽带化、移动化以及IP化等发展趋势相一致,可以为铁路提供更加好的业务承载平台。LTE技术可分为TD-LTE时分系统与FDD-LTE频分系统,其中TD-LTE时分系统在国内占据主导地位,不但有知识产权,还具有配置比较灵活、频谱利用率比较高的特点。   网络结构   TD-LTE网络结构具有扁平化的特点,其组成部分即为eUTRAN演进无线接入网与eCN核心网。其中eCN核心网的组成部分就是服务网关和移动管理,其主要工作内容就是对用户信息和数据安全性进行管理,还负责用户鉴权、移动信令和软交换等内容。而eUTRAN演进无线接入网的组成部分则是eNodeB基站,具有无线承载控制、无线资源管理和移动性管理以及数据寻址等功能。   的技术特点   TD-LTE可以为核心网、具有增强功能的IP多媒体子系统、多媒体广播多播技术等提供技术支持。同时还能够对处于~20MHz的带宽单一频段提供支持,而且并不需要进行上下行对称频谱。TD-LTE采用的技术包括正交频分复用技术、多入多出技术、混合自动重传技术以及AMC自适应调制编码技术等,上、下行峰值的相关数据速率分别可以达到75Mbit/s、150Mbit/s。TD-LTE技术的频谱利用率比较高,在进行数据传输时,其时延用户面小于10ms,控制面小于100ms,而且还能支持具有非对称性的上下行数据传输、多种方式的同频组网、高速达到350km/h的移动用户。另外,TD-LTE技术还为GSM-R系统升级提供技术支持,而且网络建设成本比较低,比3G无线通信网络低两倍。TD-LTE技术还能够通过VOIP协议开展承载话音等服务,为femto等微基站连接提供技术支持,具有比较灵活的覆盖模式。   频率资源   国家分配给国内三大运营商的频段分别为中国移动共获得130MHz,分别为1880~1900MHz、2320~2370MHz、2575~2635MHz;中国联通获得40MHz,分别为2300~2320MHz、2555~2575MHz;中国电信获得40MHz,分别为2370~2390MHz、2635~2655MHz。而较早使用在铁路上的GSM-R技术则使用900MHz频段,无法满足TD-LTE宽带通信数据移动业务的开展要求,因此可以考虑申请使用1785~1805MHz的TDD行业用户频段以及1447~1467MHz的固定移动用户频段等。   系统容量   TD-LTE系统主要对通信的最大吞吐量这个要素进行考量,而且还会实现对最大用户数的支持。在铁路通信系统中,用户数量和链状覆盖模式一般都比较有限,通常会用承载业务的质量与数量来表示吞吐量。而吞吐量的重要表征则是用户峰值速率,一般都会受到控制信道开销、时隙配比和调制方式等方面的因素影响。   系统组网技术   TD-LTE为异频、同频以及混合等形式的组网提供技术支持。其中频谱利用率最高的就是同频组网,但是小区的同频干扰会极大地影响到通信速率。而频谱利用率较低的则是异频组网,和同频组网相反,不会对小区边缘的通信速率产生太大影响。而混合组网虽然将同频对控制信道的干扰减少了,也对边缘通信质量与频谱利用率进行了改善,但是却仍然需要其他设备来为这项功能提供支持。因此,可以采用混合组网或者同频来解决,将小区扩大,还要将小区边缘重叠的区域进行压缩并且减小,再结合ICIC小区干扰协调技术以实现对小区整体数据吞吐量的提高。LTE切换与GSM-R相似,其过程都是硬切换,由源eNodeB发起,再由UE进行辅助。当切换过程失败之后,可以返回源小区。在切换的过程中,数据传输的时延至多只能是50ms。如果是二次连续进行切换,则其间隔最多为200ms。在对切换区进行设计时,列车经过的信号重叠区所用到的时间应该比切换间隔还要大。如果高铁速度为350km/h,切换区长度至多只能是20m。而常规切换机制都要基于业务负荷控制、覆盖功率预算、移动速度与移动位置,还需要对其进行强制切换。LTE在定位上精度要求比较高,一般可以达到10m量级。铁路用户的使用轨迹以及区域一般都具有固定性,采取的混合切换机制可以建立在功率预算以及位置之上。这样,就可以将切换时间尽可能地减少,同时也能够将切换的成功率切实提高起来。另外,减少切换时间,对小区边缘的地方进行压缩,还能够实现对小区数据吞吐率的有效提高。   隧道覆盖技术   根据隧道漏缆覆盖要求可以将允许路径损耗值计算出来,如上行,下行。而当泄漏电缆频段为,覆盖长度为上行730m,下行为880m时,按照铁路业务量的相关需求,每个射频拉远单元

文档评论(0)

haowendangqw + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档