- 1、本文档共44页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
分类 物以类聚、人以群分; 但根据什么分类呢? 如要想把中国的县分类,就有多种方法 可以按照自然条件来分,比如考虑降水、土地、日照、湿度等, 也可考虑收入、教育水准、医疗条件、基础设施等指标; 既可以用某一项来分类,也可以同时考虑多项指标来分类。 研究对样品或指标进行分类的一种多元统计方法,是依据研究对象的个体的特征进行分类的方法。 聚类分析把分类对象按一定规则分成若干类,这些类非事先给定的,而是根据数据特征确定的。在同一类中这些对象在某种意义上趋向于彼此相似,而在不同类中趋向于不相似。 根据事物本身的特性研究个体分类的方法,原则是同一类中的个体有较大的相似性,不同类中的个体差异很大。 不一定事先假定有多少类,完全可以按照数据本身的规律来分类。 按照远近程度来聚类需要明确两个概念:一个是点和点之间的距离,一个是类和类之间的距离。 二、距离和相似系数 在进行聚类分析时,样本间的相似系数和距离有多种不同的定义,通常按特性来划分。变量特征的测度尺度有三种类型: ? 间隔尺度(由连续的实值变量表示) ? 有序尺度(没有明确的数量表示,只有次序关系,如产品等级) ? 名义尺度(具有某种特性,如性别) 从一组复杂数据产生一个相当简单的类结构,必然要求进行“相关性”或“相似性”的度量。在相似性度量的选择中,常常包含许多主观上的考虑,但最重要的考虑是指标的性质或观测的尺度(名义、次序、间隔)以及相关知识。 课堂上主要讨论的指标测量为间隔尺度的情况。 ⒈距离 每个样本有p个指标,因此每个样本可以看成p维空间中的一个点,n个样本就组成p维空间中的n个点,这时很自然想到用距离来度量n个样本间的接近程度。 用 表示第i个样本与第j个样本之间的距离。一切距离应满足以下条件: 常见的距离有: block distance 绝对值距离: euclidean distance 欧式距离 squared euclidean distance 平方欧式距离 chebychev distance 切比雪夫距离 minkowski distance 明考斯基距离 (明氏距离) 当q=1,2时,为绝对值、欧式距离; 若趋近无穷时,则为切比雪夫距离 Lanberra 兰氏距离 Mahalanobis 马氏距离 以上都是样本间距离的定义。 ⒉相似系数 夹角余弦 相关系数 变量间的距离 利用相似系数来定义距离 利用样本协差阵来定义距离 把变量Xi的n次观测值看成n维空间的点, 在n维空间中定义m个变量间的距离。 ① 夹角余弦 两变量的夹角余弦定义为: ② 相关系数 两变量的相关系数定义为: 系统聚类法 把样本看成n维空间的点,而把变量看成n维空间的坐标轴,m个样本开始时自成一类,然后规定各类之间的距离,将距离最小的一对并成一类,然后再计算距离,直到所有单位全部合并为止。 根据一批样本的多个观测指标,具体找出一些彼此之间相似程度较大的样本(或指标)聚合为一类,把另外一些彼此之间相似程度较大的样本(或指标)又聚合为另一类,关系密切的聚合到一个小的分类单位,关系疏远的聚合到一个大的分类单位,直到把所有样本(或指标)都聚合完毕,把不同的类型一一划分出来,形成一个由小到大的分类系统。最后把整个分类系统画成一张谱系图,用它把所有样本(或指标)间的亲疏关系表示出来。这种方法是最常用的、最基本的一种,称为系统聚类分析。 系统聚类法基本步骤 1. 选择样本间距离的定义及类间距离的定义; 2. 计算n个样本两两之间的距离,得到距离矩阵 3. 构造个类,每类只含有一个样本; 4. 合并符合类间距离定义要求的两类为一个新类; 5. 计算新类与当前各类的距离。若类的个数为1,则转到步骤6,否则回到步骤4; 6.画出聚类图; 7.决定类的个数和类。 系统聚类分析的方法 系统聚类法的聚类原则决定于样品间的距离以及类间距离的定义,类间距离的不同定义就产生了不同的系统聚类分析方法。 以下用dij表示样品X(i)和X(j)之间的距离,当样品间的亲疏关系采用相似系数Cij时,令 ; 以下用D(p,q)表示类Gp和Gq之间的距离。 1.最短距离法(SINgle method) 2.最长距离法(COMplete method) 3.重心法(CENtroid method) 4.类平均法(AVErage method) 5.离差平方和法(WARD) 基本思想来源于方差分析。它认为:如果分类正确,同类间的类差平方和应较小,类与类之间的离差平方和应较大. 具体做法是,先将n个样本分成一类,然后每
文档评论(0)