- 1、本文档共15页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
机器视觉在生球团含水率预测中的应用
摘 要: 为了实现对生球团含水率的无接触式快速检测,建立生球团含水率预测模型。以铁精矿生球团为研究对象,利用中值滤波器去除图像噪声,再提取生球团图像的灰度直方图特征(最大概率灰度、平均灰度、标准方差、平滑度、标准偏差、峰态、偏斜度)及灰度共生矩阵纹理特征(能量、熵、对比度、相关性),分别以其为输入指标,建立粒子群优化的支持向量机回归预测模型对含水率进行预测,比较不同输入特征的预测精度。结果表明:灰度直方图特征预测结果的平均绝对误差和平均相对误差分别为0.037 4和0.524,灰度共生矩阵纹理特征预测结果的平均绝对误差和平均相对误差分别为0.020 1和0.284 5;灰度共生矩阵纹理特征预测精度高于灰度直方图特征预测精度。
键词: 生球团; 含水率; 机器视觉; 图像处理; 特征提取; 支持向量机回归
中图分类号: TN911?34; TP391.41 文献标识码: A 文章编号: 1004?373X(2018)20?0083?05
Abstract: A water content rate prediction model of the green pellet is established to realize non?contact rapid detection for the water content rate of green pellets. Taking the green pellets of iron ore concentrate as the research object, the median filters are used to remove image noises. The gray histogram features (the maximum probability gray value, average gray value, standard variance, smoothness, standard deviation, kurtosis, and skewness) and the gray?level co?occurrence matrix (GLCM) textural features (energy, entropy, contrast, correlation) of green pellet images are extracted. Taking the extracted features as input indexes, the support vector machine regression prediction model based on particle swarm optimization is established to predict the water content rate and compare the prediction precisions of different input features. The results show that the average absolute error and average relative error for prediction results of gray histogram features are 0.037 4 and 0.524 respectively, while the average absolute error and average relative error for prediction results of gray?level co?occurrence matrix textural features are 0.020 1 and 0.284 5 respectively, which indicates that the prediction precision of gray?level co?occurrence matrix textural features is higher than that of gray histogram features.
Keywords: green pellet; water content rate; machine vision; image processing; feature extraction; support vector machine regression 0 引 言
球团矿是现代大型高炉炼铁的重要原料之一,其质量的优劣将直接影响高炉的生产[1]。球团矿是生球团经过干燥、焙烧加工而成的。因此,提高球团矿的生产质量必须首先提高生球团的质量
文档评论(0)