- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
外文资料原文 Efficient URL Caching for World Wide Web Crawling Andrei Z. Broder IBM TJ Watson Research Center 19 Skyline Dr Hawthorne, NY 10532 abroder@ Marc Najork Microsoft Research 1065 La Avenida Mountain View, CA 94043 najork@ Janet L. Wiener Hewlett Packard Labs 1501 Page Mill Road Palo Alto, CA 94304 janet.wiener@ ABSTRACT Crawling the web is deceptively simple: the basic algorithm is (a)Fetch a page (b) Parse it to extract all linked URLs (c) For all the URLs not seen before, repeat (a)–(c). However, the size of the web (estimated at over 4 billion pages) and its rate of change (estimated at 7% per week) move this plan from a trivial programming exercise to a serious algorithmic and system design challenge. Indeed, these two factors alone imply that for a reasonably fresh and complete crawl of the web, step (a) must be executed about a thousand times per second, and thus the membership test (c) must be done well over ten thousand times per second against a set too large to store in main memory. This requires a distributed architecture, which further complicates the membership test. A crucial way to speed up the test is to cache, that is, to store in main memory a (dynamic) subset of the “seen” URLs. The main goal of this paper is to carefully investigate several URL caching techniques for web crawling. We consider both practical algorithms: random replacement, static cache, LRU, and CLOCK, and theoretical limits: clairvoyant caching and infinite cache. We performed about 1,800 simulations using these algorithms with various cache sizes, using actual log data extracted from a massive 33 day web crawl that issued over one billion HTTP requests. Our main conclusion is that caching is very effective – in our setup, a cache of roughly 50,000 entries can achieve a hit rate of almost 80%. Interestingly, this cache size falls at a critical point: a substantially smaller cache is much less effective while a substantially larger cache brings little additional benefit. We
您可能关注的文档
最近下载
- 电力市场分析软件:PLEXOS二次开发_(18).与其他软件系统的集成.docx VIP
- PLEXOS for Renewables 可再生能源仿真应用场景.pdf VIP
- 洼田饮水评分操作要点.pptx VIP
- 涉密工程必威体育官网网址工作方案(3篇).docx VIP
- 2023年第37届中国化学奥林匹克决赛试题完整版(两套含答案解析) .pdf VIP
- 2025年顶管施工试题及答案.docx
- 中国共产党党内监督条例_学习解读ppt完整版.pptx VIP
- 光大金瓯资产管理有限公司招聘笔试题库2024.pdf
- 电力市场分析软件:PLEXOS二次开发_(16).风险评估与管理.docx VIP
- 新凯来光学技术笔试题.docx VIP
文档评论(0)