变量间的相关关系-教案.doc

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
资料 . 变量间的相关关系 一、教材分析 学生情况分析:学生已经具备了对样本数据进行初步分析的能力,且掌握了一定的计算基础。 教材地位和作用:变量间的相关关系是高中新教材人教A版必修3第二章2.3节的内容, 本节课主要探讨如何利用线性回归思想对实际问题进行分析与预测。为以后更好地研究选修2-3第三章3.2节回归分析思想的应用奠定基础。 二、教学目标 1、知识与技能:利用散点图判断线性相关关系,了解最小二乘法的思想及线性回归方程系数公式的推导过程,求出回归直线的方程并对实际问题进行分析和预测,通过实例加强对回归直线方程含义的理解。 2 、过程与方法: ①通过自主探究体会数形结合、类比、及最小二乘法的数学思想方法。 ②通过动手操作培养学生观察、分析、比较和归纳能力。 3、情感、态度与价值观:类比函数的表示方法,使学生理解变量间的相关关系,增强应用回归直线方程对实际问题进行分析和预测的意识。 三、教学重点、难点 重点:利用散点图直观认识两个变量之间的线性相关关系,了解最小二乘法的思想并利用此思想求出回归方程。 难点:对最小二乘法的数学思想和回归方程的理解,教学实施过程中的难点是根据给出的线性回归方程的系数公式建立线性回归方程。 四、教学设计) (一)、创设情境 导入新课 1、相关关系的理解 我们曾经研究过两个变量之间的函数关系:一个自变量对应着唯一的一个函数值,这两者之间是一种确定关系。生活中的任何两个变量之间是不是只有确定关系呢? 如:学生成绩与教师水平之间存在着某种联系,但又不是必然联系,对于学生成绩与教师水平之间的这种不确定关系,我们称之为相关关系。这就是我们这节课要共同探讨的内容————变量间的相关关系。 生活中还有很多描述相关关系的成语,如:“虎父无犬子”,“瑞雪兆丰年”。通过学生熟悉的函数关系,引导学生关注生活中两个变量之间还存在的相关关系。让学生体会研究变量之间相关关系的重要性。感受数学来源于生活。 (二)、初步探索,直观感知 1、根据样本数据作出散点图,直观感知变量之间的相关关系。在研究相关关系前,先回忆一下函数的表示方法有哪些——列表,画图象,求解析式。下面我们就用这些方法来研究相关关系。看这样一组数据: 在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据,根据样本数据,人体的脂肪含量与年龄之间有怎样的关系? 年龄 23 27 39 41 45 49 50 53 54 56 57 58 60 61 脂肪 9.5 17.8 21.2 25.9 27.5 26.3 28.2 29.6 30.2 31.4 30.8 33.5 35.2 34.6 结论:随着年龄增长,脂肪含量在增加。用x轴表示年龄,y轴表示脂肪。一组样本数据就对应着一个点。 年龄 脂肪 23 9.5 27 17.8 39 21.2 41 25.9 45 27.5 49 26.3 50 28.2 53 29.6 54 30.2 56 31.4 57 30.8 58 33.5 60 35.2 61 34.6 散点图 这个图跟我们所学过的函数图象有区别,它叫作散点图。 2、判断正、负相关、线性相关: 请观察这4幅图,看有什么特点? 0 0 10 20 30 40 50 60 70 80 90 100 40 50 60 70 80 90 110 0 0.2 0.4 0.6 0.8 1 1.2 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 图1呈上升趋势,图2呈下降趋势。这就像函数中的增函数和减函数。即一个变量从小到大,另一个变量也从小到大,或从大到小。对于图1中的两个变量的相关关系,我们称它为正相关。图2中的两个变量的相关关系,称为负相关。 后面两个图很乱,前面两个图中点的分布呈条状。从数学的角度来解释:即图1、2中的点的分布从整体上看大致在一条直线附近。我们称图1、2中的两个变量具有线性相关关系。这条直线叫做回归直线。图3、4中的两个变量是非线性相关关系 (三)、循序渐进、延伸拓展 1、找回归直线 师:下面我们再来看一下年龄与脂肪的散点图, 从整体上看,它们是线性相关的。如果可以求出回归直线的方程,我们就可以清楚地了解年龄与体内脂肪含量的相关性。这条直线可以作为两个变量具有线性相关关系的代表。能否画出这条直线? 数学实验1: 画出回归直线 学生方案一

文档评论(0)

hkfgmny + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档