磁共振成像的原理及临床应用 PPT课件.pptVIP

磁共振成像的原理及临床应用 PPT课件.ppt

  1. 1、本文档共146页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
磁共振成像的原理及临床应用 What is MRI ? 磁共振成像(Magnetic Resonance Imaging ,MRI),又称核磁共振成像(Nuclear Magnetic Resonance ,NMR),是一种新的、非创伤性的成像方法,它不用电离辐射而可以显示出人体内部解剖结构。 利用一定频率的射频信号(radio frequency,RF)在一外加静磁场内,对人体的任何平面,产生高质量的切面成像(cross sectional imaging)。 第一节 MRI发展概况 1946年美国斯坦福(Stanford)大学的Felix Bloch和哈佛(Harvard)大学的Edward Purcell各自进行研究,检测到大块物质内核磁共振吸收,更清楚地阐述了原子核自旋(Spin)的存在,几乎同时发表他们的研究成果,为此,他们共同获得了1952年诺贝尔物理学奖。 NMR的应用逐渐地从物理和化学领域,扩大到更为广泛的学科,如考古学直至医学。 第一节 MRI发展概况 在医学影像学方面,1973年Lauterbur研究出MRI所需要的空间定位方法,也就是利用梯度场。他的研究结果是获得水的模型的图像。 在以后的10年中,人们进行了大量的研究工作来制造磁共振扫描机,并产生出人体各部位的高质量图像,先后通过MR扫描,获得手、胸、头和腹部的图像。 1980年商品化MRI装置问世。 第二节 MRI的基本原理 本节介绍核磁共振这一物理现象最基本的理论知识,我们应用一般物理学、力学及磁学的原理阐述。 一、原子核及其在磁场内的特性 人体由很多分子组成,分子由原子组成; 所有原子的核心都是原子核; 带正电荷和中性粒子的集合体; 占原子质量的绝大部分; 一、原子核及其在磁场内的特性 从理论上讲,很多元素都可以用核磁共振来成像。也就是任何一个原子核,只要其所含的质子或中子的任何一个为奇数时,就具备磁性,就可以产生磁共振信号。 一、原子核及其在磁场内的特性 MRI主要是应用于氢核的成像,这是出于: 一是H对其磁共振信号的敏感性高;H的旋磁比最高,因此最敏感,即MR信号被测出的效率,随共振信号频率的增加而改善。 二是它在自然界含量丰富。氢存于水和脂肪中,因而在人体中极为丰富,每立方毫米软组织中含有约1019个H原子,其所产生的磁共振信号要比其他原子强1000倍。 一、原子核及其在磁场内的特性 由于1H只有一个质子,没有中子,所以氢核的成像也称质子成像。 氢核有两个特性: 其一是它含有一个不在核中心的正电荷; 其二是它有角动量或自旋。Pauli理论,具有奇数原子质量或奇数原子数的核均具有角动量及具有特征性的、大于零的自旋量子数。 一、原子核及其在磁场内的特性 自旋的氢核其正电荷沿着一近似圆形路线运动,犹如电流通过环形线圈一样,从而在其周围产生一磁场。此滋场的大小与方向用磁矩 来表示,形成一个微观的磁体偶极子。 一、原子核及其在磁场内的特性 共振是一种常见的现象。指南针是我们最熟悉的磁体,地球是一个磁场。 指南针在地球表面作定向排列,即在静止状态下指北。 如果我们用手指轻击指南针,使之来回摆动,直到指南针从我们手指上得到的能量全部放出后,又回到原来的位置,指北。这就是共振现象。针摆动的频率为共振頻率。 一、原子核及其在磁场内的特性 共振频率与外磁场强度成正比。地球的两极场强最强,赤道最弱。 在赤道与两极之间,磁场强度逐渐变化,称梯度磁场或简称梯度。 如果指南针在赤道摆动的频率为1周/秒,越向北其摆动的频率越快。这是因为北极滋场强度较赤道大2.3倍。 一、原子核及其在磁场内的特性 这个简单的例子可以帮助我们了解磁共振成像中的基本要点: ①指南针置于磁场中与外磁场的方向作定向排列; ②指南针的共振频率与外磁场强度成正比; ③当有梯度磁场时,根据指针摆动频率的变化可以推断其在磁场中所处的位置。 一、原子核及其在磁场内的特性 众多的氢核(质子)就是许多微观的磁偶极子,在没有外加磁场影响下,它们的磁矩是任意指向,杂乱无章地排列着。 在这种情况的组织标本中,净磁量为零。 一、原子核及其在磁场内的特性 将这些指向杂乱无章的质于置于强大的静磁场(B0) 中时,质于群的磁矩将会沿静磁场的方向作定向排列。 略超过半数的质子与静磁场B0平行排列,略少于半数的质子则指向相反(与静磁场呈反平行方向排列)。 一、原子核及其在磁场内的特性 当有两种可能的排列状态时,耗能少的、 处于低能态的排列状态占优势。 一、原子核及其在磁场内的特性 低能量级的、平行于静磁场方向的质子与高能量级的、反平行于静磁场方向的质子来回翻转,相互抵消,而产生平衡的磁化量M0,也就是在一定量的组织中,所有氢核的磁化量的总和。 这一净平衡磁化量的指向与外加静磁场是一致的。要使置于外

文档评论(0)

celkhn0303 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档