梅尔到频谱系数..ppt

  1. 1、本文档共61页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
语音信号的倒谱分析 根据语音信号的产生模型,语音信号S(Z)是一个线性非移变因果稳定系统V(Z)受到信号E(Z)激励后所产生的输出。 在时域中,语音信号s(n)是该系统的单位取样响应v(n)和激励信号e(n)的卷积。 在语音信号数字处理所涉及的各个领域中,根据s(n)来求得v(n)和e(n)具有非常重要的意义。 由卷积信号求得参与卷积的各个信号的过程称为解卷过程。 语音信号的倒谱分析 解卷算法可以分为两大类: 第一类是首先为线性系统V(Z)建立一个模型,然后对模型参数按照某种最佳准则进行估计,这种方法称为参数解卷方法。采用的模型可以分为全极点模型(AR模型)和零极点模型(ARMA模型),如果采用最小均方误差准则对AR模型进行估计,就得到线性预测编码算法(LPC)。 第二类算法称为非模型解卷。同态信号处理完成解卷任务就是其中最重要的一种。 语音信号的倒谱分析 对信号进行分析得出它的倒谱参数的过程称为同态处理。 对语音信号的某一帧同样可以分析出它的短时倒谱参数,总的说来,无论对于语音通信、语音合成或语音识别,倒谱参数所含的信息比其他参数多,也就是语音质量好,识别正确率高。 但其缺点是运算量比其他参数大,尽管如此,倒谱分析方法仍不失为一种有效的语音信号的分析方法。 同态分析的基本原理 有很多客观物理现象中的信号,其中各组成分量的组合,并不是按照加法组合原则组合起来的,如图像信号、地震信号、调制信号、语音信号等,它们都不是加性信号,而是乘积性或卷积性组合的信号。 显然,这时不能用线性系统来处理,而必须用满足该组合规则的非线性系统来处理。但是非线性系统地分析非常困难。 同态信号处理法就是设法将非线性问题转化为线性问题来处理的一种方法。按照被处理的信号来分类,大体上可以分为乘积同态信号处理和卷积同态信号处理。 由于语音信号可以视为声门激励信号和声道响应信号的卷积结果。我们仅讨论卷积同态信号处理系统的问题。 卷积同态信号处理系统 同态系统可以分解为两个特征系统(即特征系统和逆特征系统)(指取决于信号的组合规则)和一个线性系统(仅取决于处理要求) 卷积同态信号处理系统 卷积同态信号处理系统 由于加性信号的Z变换结果仍为加性信号,所以倒谱这种时域信号,是可以用线性系统来处理的,经线性处理之后,如欲在恢复出语音信号,则可以采用逆特征系统来实现,即特征系统的逆运算。即将线性系统输出的加性倒谱信号: 卷积同态信号处理系统 特征系统与逆特征系统的组成 语音信号的倒谱 语音信号的倒谱 由序列的复倒谱求倒谱的方法 由于偶对称序列的DTFT是实函数,奇对称序列的DTFT是虚函数。 由序列的复倒谱求倒谱的方法 相位倒谱的概念 假设 则 称p(n)为相位倒谱。 已知倒谱求复倒谱的方法 要想由倒谱求复倒谱,首先复倒谱必须满足一定的条件,比如是因果序列 则 因此 已知倒谱求复倒谱的方法 如果复倒谱是一个反因果序列: 则可以推导出: 只有当x(n)是一个因果最小相位序列是其复倒谱序列才是一个因果稳定序列。这要求x(n)应满足两个条件:1 x(n)=x(n)u(n);2 X(Z)=Z[x(n)]的零极点都应该在单位圆内。 语音信号倒谱和复倒谱的性质 根据语音信号产生的模型,在z域中语音信号S(Z)等于激励信号E(Z)和声道传输函数V(Z)的乘积,即S(Z)=E(Z)V(Z)。经过同态系统后可以得到: 先讨论声门激励信号。除了人们发清音时,声门激励是能量较小、频谱均匀分布的白噪声之外;发浊音时,声门激励是以基调周期为周期的周期脉冲序列 语音信号倒谱和复倒谱的性质 语音信号倒谱和复倒谱的性质 由上式可以得出以下结论:一个周期冲激的有限长度序列,其复倒谱也是一个同周期长度的周期冲激序列,只是其长度变为无限长度、振幅随着K值的增加而衰减,衰减速度比原来序列要快,显然,周期冲激序列的倒谱的这些性质对于语音信号的分析是很有用的,这意味着除了原点之外,可以用“高时窗”来从语音信号的倒谱中提取浊音激励信号的倒谱,从而使倒谱法提取音调成为现实。 语音信号倒谱和复倒谱的性质 语音信号倒谱和复倒谱的性质 语音信号倒谱和复倒谱的性质 语音信号倒谱和复倒谱的性质 语音信号倒谱和复倒谱的性质 语音信号倒谱和复倒谱的性质 在清音情况下,e(n)具有噪声特性,因而其复倒谱也没有明显的峰起点,且分布范围很宽,从低时域延伸到高时域。而v(n)的复倒谱仍然只分布在低时域中。 求复倒谱的一种有效的递推算法 前提:x(n)是最小相位序列。 因为 求复倒谱的一种有效的递推算法 语音信号的线性预测分析 Linear Prediction 1947年维纳提出; 1967年板仓等人应用于语音分析与合成; 语音信号处理与分析的核心技术 提供

文档评论(0)

586334000 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档