课件:主成分分析与因子分析.ppt

  1. 1、本文档共31页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
课件:主成分分析与因子分析.ppt

怎么解释这两个主成分。前面说过主成分是原始六个变量的线性组合。是怎么样的组合呢?SPSS可以输出下面的表。 这里每一列代表一个主成分作为原来变量线性组合的系数(比例)。比如第一主成分作为数学、物理、化学、语文、历史、英语这六个原先变量的线性组合,系数(比例)为-0.806, -0.674, -0.675, 0.893, 0.825, 0.836。 如用x1,x2,x3,x4,x5,x6分别表示原先的六个变量,而用y1,y2,y3,y4,y5,y6表示新的主成分,那么,原先六个变量x1,x2,x3,x4,x5,x6与第一和第二主成分y1,y2的关系为: X1=-0.806y1 + 0.353y2 X2=-0.674y1 + 0.531y2 X3=-0.675y1 + 0.513y2 X4= 0.893y1 + 0.306y2 x5= 0.825y1 + 0.435y2 x6= 0.836y1 + 0.425y2 这些系数称为主成分载荷(loading),它表示主成分和相应的原先变量的相关系数。 比如x1表示式中y1的系数为-0.806,这就是说第一主成分和数学变量的相关系数为-0.806。 相关系数(绝对值)越大,主成分对该变量的代表性也越大。可以看得出,第一主成分对各个变量解释得都很充分。而最后的几个主成分和原先的变量就不那么相关了。 可以把第一和第二主成分的载荷点出一个二维图以直观地显示它们如何解释原来的变量的。这个图叫做载荷图。 该图左面三个点是数学、物理、化学三科,右边三个点是语文、历史、外语三科。图中的六个点由于比较挤,不易分清,但只要认识到这些点的坐标是前面的第一二主成分载荷,坐标是前面表中第一二列中的数目,还是可以识别的。 因子分析 主成分分析从原理上是寻找椭球的所有主轴。因此,原先有几个变量,就有几个主成分。 而因子分析是事先确定要找几个成分,这里叫因子(factor)(比如两个),那就找两个。 这使得在数学模型上,因子分析和主成分分析有不少区别。而且因子分析的计算也复杂得多。根据因子分析模型的特点,它还多一道工序:因子旋转(factor rotation);这个步骤可以使结果更好。 当然,对于计算机来说,因子分析并不比主成分分析多费多少时间。 从输出的结果来看,因子分析也有因子载荷(factor loading)的概念,代表了因子和原先变量的相关系数。但是在输出中的因子和原来变量相关系数的公式中的系数不是因子载荷,也给出了二维图;该图虽然不是载荷图,但解释和主成分分析的载荷图类似。 主成分分析与因子分析的公式上的区别 主成分分析 P312 因子分析(mp) P314 因子得分 P315 对于我们的数据,SPSS因子分析输出为 这里,第一个因子主要和语文、历史、英语三科有很强的正相关;而第二个因子主要和数学、物理、化学三科有很强的正相关。因此可以给第一个因子起名为“文科因子”,而给第二个因子起名为“理科因子”。从这个例子可以看出,因子分析的结果比主成分分析解释性更强。 这两个因子的系数所形成的散点图(虽然不是载荷,在SPSS中也称载荷图, 可以直观看出每个因子代表了一类学科 计算因子得分 可以根据前面的因子得分公式(因子得分系数和原始变量的标准化值的乘积之和),算出每个学生的第一个因子和第二个因子的大小,即算出每个学生的因子得分f1和f2。 人们可以根据这两套因子得分对学生分别按照文科和理科排序。当然得到因子得分只是SPSS软件的一个选项(可将因子得分存为新变量、显示因子得分系数矩阵) 因子分析和主成分分析的一些注意事项 ?可以看出,因子分析和主成分分析都依赖于原始变量,也只能反映原始变量的信息。所以原始变量的选择很重要。 另外,如果原始变量都本质上独立,那么降维就可能失败,这是因为很难把很多独立变量用少数综合的变量概括。数据越相关,降维效果就越好。 在得到分析的结果时,并不一定会都得到如我们例子那样清楚的结果。这与问题的性质,选取的原始变量以及数据的质量等都有关系 在用因子得分进行排序时要特别小心,特别是对于敏感问题。由于原始变量不同,因子的选取不同,排序可以很不一样。 SPSS实现(因子分析与主成分分析) 拿student.sav为例,选Analyze-Data Reduction-Factor进入主对话框; 把math、phys、chem、literat、history、english选入Variables,然后点击Extraction, 在Method选择一个方法(如果是主成分分析,则选Principal Components), 下面的选项可以随意,比如要画碎石图就选Scree plot,另外在Extract选项可以按照特征值的大小选主成分(或因子),也可以选定因子的数目; 之后回到

文档评论(0)

iuad + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档