A local asynchronous distributed privacy preserving feature selection algorithm for large peer-to-peer networks 一种大型对等网络的局部异步分布式必威体育官网网址特征选择算法.pdf

A local asynchronous distributed privacy preserving feature selection algorithm for large peer-to-peer networks 一种大型对等网络的局部异步分布式必威体育官网网址特征选择算法.pdf

  1. 1、本文档共27页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Knowl Inf Syst (2010) 24:341–367 DOI 10.1007/s10115-009-0274-3 REGULAR PAPER A local asynchronous distributed privacy preserving feature selection algorithm for large peer-to-peer networks Kamalika Das · Kanishka Bhaduri · Hillol Kargupta Received: 15 August 2008 / Revised: 17 July 2009 / Accepted: 10 October 2009 / Published online: 25 November 2009 © Springer-Verlag London Limited 2009 Abstract In this paper we develop a local distributed privacy preserving algorithm for feature selection in a large peer-to-peer environment. Feature selection is often used in machine learning for data compaction and efficient learning by eliminating the curse of dimensionality. There exist many solutions for feature selection when the data are located at a central location. However, it becomes extremely challenging to perform the same when the data are distributed across a large number of peers or machines. Centralizing the entire dataset or portions of it can be very costly and impractical because of the large number of data sources, the asynchronous nature of the peer-to-peer networks, dynamic nature of the data/network, and privacy concerns. The solution proposed in this paper allows us to perform feature selection in an asynchronous fashion with a low communication overhead where each peer can specify its own privacy constraints. The algorithm works based on local interac- tions among participating nodes. We present results on real-world dataset in order to test the performance of the proposed algorithm. Keywords Privacy preserving · Data mining · Feature selection · Distributed computation K. Das ( ) B Stinger Ghaffarian Technologies Inc., IDU Group, NASA Ames Research Center, Moffett Field, CA 94035, USA e-mail: kdas1@; kamalika_das@ K. Bhaduri Mission Critical Technologies Inc., IDU Group, NASA Ames Research Center, Moffett Field, CA 94035, USA e-mail: Kanishka.Bhaduri-1@ H. Kargupta Dep

您可能关注的文档

文档评论(0)

sunache + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档