A local asynchronous distributed privacy preserving feature selection algorithm for large peer-to-peer networks 一种大型对等网络的局部异步分布式必威体育官网网址特征选择算法.pdf
- 1、本文档共27页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Knowl Inf Syst (2010) 24:341–367
DOI 10.1007/s10115-009-0274-3
REGULAR PAPER
A local asynchronous distributed privacy preserving
feature selection algorithm for large peer-to-peer
networks
Kamalika Das · Kanishka Bhaduri · Hillol Kargupta
Received: 15 August 2008 / Revised: 17 July 2009 / Accepted: 10 October 2009 /
Published online: 25 November 2009
© Springer-Verlag London Limited 2009
Abstract In this paper we develop a local distributed privacy preserving algorithm for
feature selection in a large peer-to-peer environment. Feature selection is often used in
machine learning for data compaction and efficient learning by eliminating the curse of
dimensionality. There exist many solutions for feature selection when the data are located
at a central location. However, it becomes extremely challenging to perform the same when
the data are distributed across a large number of peers or machines. Centralizing the entire
dataset or portions of it can be very costly and impractical because of the large number of
data sources, the asynchronous nature of the peer-to-peer networks, dynamic nature of the
data/network, and privacy concerns. The solution proposed in this paper allows us to perform
feature selection in an asynchronous fashion with a low communication overhead where each
peer can specify its own privacy constraints. The algorithm works based on local interac-
tions among participating nodes. We present results on real-world dataset in order to test the
performance of the proposed algorithm.
Keywords Privacy preserving · Data mining · Feature selection · Distributed computation
K. Das ( )
B
Stinger Ghaffarian Technologies Inc., IDU Group,
NASA Ames Research Center, Moffett Field, CA 94035, USA
e-mail: kdas1@; kamalika_das@
K. Bhaduri
Mission Critical Technologies Inc., IDU Group,
NASA Ames Research Center, Moffett Field, CA 94035, USA
e-mail: Kanishka.Bhaduri-1@
H. Kargupta
Dep
您可能关注的文档
- CEO control, corporate performance and pay-performancesensitivity CEO控制、公司绩效和薪酬绩效敏感性.pdf
- HOUSING FOR AN AGING SOCIETY THE MEANING OF BARRIER-FREE DESIGN 老龄化社会住房无障碍设计的意义.pdf
- Administration of misoprostol by trained traditional birth attendants to prevent postpartum haemorrhage in homebirths in Pakistan a randomised placebo-controlled trial 由受过训练的传统接生员服用米索前列醇预防巴基斯坦家庭分娩中产后出血:一项随机安慰剂对照试验.pdf
- ACS510变频器设定参数.pdf
- Incidental Acquisition of Vocabulary by Reading 通过阅读偶然获得词汇.pdf
- Emotional labor A conceptualization and scale development 情感劳动:概念化和规模化发展.pdf
- 汽车大梁用热轧H型钢的现状及标准综述.pdf
- 解析贝多芬钢琴奏鸣曲OP 10NO2.pdf
- Transformational leadership in Government secondary schools in Zimbabwe with special reference to Bulawayo 津巴布韦政府中学的转型领导特别提到布拉瓦约.pdf
- 基于S7-200 PLC 的十吨级龙门吊自动转向控制系统.pdf
文档评论(0)