- 1、本文档共43页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
【SAS输出结果】 The LOGISTIC Procedure ① Response Profile Ordered Total Value Y Count Weight 1 2 4 15.000000 2 1 4 25.000000 3 0 4 59.000000 ② Score Test for the Proportional Odds Assumption Chi-Square = 0.7505 with 2 DF (p=0.6871) ③ Model Fitting Information and Testing Global Null Hypothesis BETA=0 Intercept Intercept and Criterion Only Covariates Chi-Square for Covariates AIC 190.499 178.977 . SC 191.469 180.916 . -2 LOG L 186.499 170.977 15.522 with 2 DF (p=0.0004) Score . . 14.849 with 2 DF (p=0.0006) ④ Analysis of Maximum Likelihood Estimates Parameter Standard Wald Pr Standardized Odds Variable DF Estimate Error Chi-Square Chi-Square Estimate Ratio INTERCP1 1 -2.6680 0.4657 32.8270 0.0001 . . INTERCP2 1 -1.1711 0.3930 8.8820 0.0029 . . X1 1 1.6433 0.4380 14.0736 0.0002 1.358335 5.172 X2 1 -0.1903 0.4189 0.2063 0.6496 -0.157280 0.827 【结果解释】 ① 显示因变量y的排列数序:2,1,0。因此输出的是p(y=2)和p(y=1)的概率模型。 ② 多值logistic回归模型的平行性检验结果:p=0.6871,不能拒绝零假设,即模型的平行性成立。因此下面得到的回归模型具有解释意义。 ③ 模型的总体检验结果:p=0.0004,模型具有统计意义。 ④ 参数的检验结果:x1 (绷带种类)具有显著性统计意义(p=0.0001),x2 (包扎方式)不具有显著性统计意义(p=0.6496)。 SPSS --Logistic回归分析 非条件Logistic回归分析 * 多元Logistics回归分析 李忠良 华中科技大学同济医学院 内容 基本原理 数学模型 方法步骤 系数解释 条件Logistics分析 应用 内容 基本原理 数学模型 方法步骤 系数解释 条件Logistics分析 应用 从数学角度看,logistic回归模型非常巧妙地避开了分类型变量的分布问题,补充完善了线性回归模型和广义线性回归分析的缺陷。 因变量y 是分类型变量,自变量x是与之有关的一些因素。但是,这样的问题却不能直接用线性回归分析方法来解决,其根本原因就在于因变量是分类型变量,严重违背了线性回归分析对数据的假设条件。 从数学角度看,很难找到一个函数y=f (x),当x变化时,它对应的函数值y仅取两个或几个有限值。 研究者将所要研究的问题转换了一个角度,不是直接分析y与x的关系,而是分析y取某个值的概率p与x的关系。 分析因变量y取某个值的概率p与自变量x的关系,等价于寻找一个连续函数p=p(x),使得当x变化时,它对应的函数值p不超出[0,1]范围。数学上这样的函数是存在且不唯一的,logistic回归模型就是满足这种要求的函数之一。 根据数据的类型,logistic回归分析分为两种: 一种是条件logistic回归(conditional logistic regression),用于分析配对病例对照研究数据。 另一种是非条件logistic回归(unconditional logistic re
文档评论(0)