激光激发新型声表面波气体传感器.pptVIP

激光激发新型声表面波气体传感器.ppt

  1. 1、本文档共24页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
激光激发新型声表面波气体传感器 Gas sensor based on detecting the SAW generated by laser 论文结构 摘要 引言 结果与分析 讨论 原理 摘要 提出了一种利用激光激发声表面波,通过气体吸附性薄膜对被测气体进行检测的传感原理。激光在覆有选择性气体吸附膜的铝块表面激发出声表面波,后者沿铝块表面传播。在吸附性薄膜与被测气体发生反应后,声表面波的强度被改变;然后利用PMT(光电倍增管),通过单芯光纤耦合的反射式光束偏转法探测由半导体激光器发出的探测光束,所检测的光强的变化反映了被检测气体的浓度,从而实现被测气体的浓度测量。 引言 随着工业化的进程和人们生活水平的提高,空气质量成为人们日益关注的问题,气体传感器也因此成为倍受人们关注的研究课题。在众多的气体传感器中,SAW气体传感器的开发和应用受到了广泛的关注并获得了长足的进步。 传统的SAW气体传感器大多采用金属叉指换能器(IDT)制成的,但传统的声电换能器由于固有的缺点,如频响低,接触式等,越来越多的被这二十年来发展起来的光学方法来代替,光学方法可以分为干涉法和非干涉法。并且有一个趋势,即光纤化,光纤传感器由于固有的诸多优点,例如小巧灵活,抗干扰强,易于微型化和集成化,已越来越多的被用在超声检测中,替代己有的复杂光路检测手段。由于光学技术的不断提高,这方面的研究也在飞速发展。为实验研究提供了更好的手段和工具。 激光超声检测技术以其非接触和适合运动检测等显著优点,已成为无损检测领域中的一种重要技术和手段。在此结合传统SAW气体传感器的吸附性薄膜与气体作用的原理与激光超声检测技术,我们提出一种新的气体传感器原理。采用激光在覆有吸附性薄膜的金属表面激发声表面波,用单芯光纤耦合的反射式光束偏转法在薄膜处对所激发声表面波进行探测,进而准确检测出气体的浓度。此气体传感器的优点在于采用光学方法来检测由激光激发的声脉冲,不仅非接触,而且也为气体监测提供了一种新的途径。 激光激发声表面波新型气体传感器原理 检测装置原理图如图1。 瑞利波是由Nd:YAG激光器来激发,波长1.06μm,脉宽30ns,单脉冲的能量可以达到70mJ,激光脉冲通过滤光片滤波后,被一个聚焦透镜(焦距40mm)聚焦在靶材上,当靶材受到脉冲激光的作用时,由于热弹以及融蚀等多种效应,会在材料中激发出各种波型,如体波(纵波,横波),瑞利波,薄板材料中的Lamb波,以及多层材料的Love波等.本实验通过柱状透镜聚焦成一线光源,所激发的是瑞利波,瑞利波(Raleigh wave)是一种常见的界面弹性波,是沿半无限弹性介质自由表面传播的偏振波.由英国学者瑞利于1887年首先指出其存在而得名.它在固体的表面产生并沿着表面传播,其振幅随离表面深度而迅速衰减.瑞利波在垂直于线光源方向传播占绝对优势. 探测光束由半导体激光器(波长为0.651μm,功率为5mW)发出,通过光电倍增管(PMT)接收激光反射光实现。探测光束由聚焦透镜聚焦到靶材表面,反射光再由一个显微透镜聚焦。 从光纤输出的光通过光电倍增管转化为电信号,信号经放大滤波后,由A/D采样并通过串口存储到PC机进行处理。 当瑞利波脉冲在靶材表面传播时,会产生微小的表面形变,如图2所示,近似认为光束发生镜面反射。 设表面形变的倾斜角为θ,那么,光束反射时偏移原路径的角度即为2θ相应的,反射光束经显微透镜聚焦后形成光斑偏移的距离可以表示为: 探测光束的聚焦光斑的半径为: 式中r1是检测光束的半径;f1,f2分别是透镜Ll、L2的焦距(rl=2mm,f1=40mm,f2=4mm);单的光纤的半径为r(5μm),且有Rr。 探测激光光束的光强服从Gaussian分布: 式中是光束光强的最大值,A为常数。 如图3,光纤耦合的光通量为: 式中a为聚焦光斑的中心到光纤中心的距离。 光纤的耦合通量随靶材表面形变而发生改变,因为Rr,则近似有: 式中和之间的相应关系可看作服从高斯函数,如图4。 为了有最佳的近似线性效果,首先调节光纤使耦合光通量初值为最大值的一半,如图4,把工作点取在曲线上的A点。 由于工作区在点A附近很小的区域,可取A点的导数作为线性系数。 于是,方程可以简化为: 通过对光通量变化的测量,很容易的确定倾斜角0。而光通量的变化转化为交流电信号: 式中η是转化因子(单位v/w)。 在本SAW气体传感器中,除了利用单芯光纤探测光束的偏转来反映声表面波信息外,关键的部分在于在靶材的中间位置覆了一层很薄的气体选择性吸附膜,该膜只对所需敏感的气体有吸附作用。本SAW气体传感器输出的可靠性在很

文档评论(0)

kfcel5460 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档