- 1、本文档共8页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
51 21 Vol.51 No.21
2015 11 JOURNAL OF MECHANICAL ENGINEERING Nov. 2 0 1 5
DOI 10.3901/JME.2015.21.049
*
( 710049)
TH17
A Deep Learning-based Method for Machinery Health Monitoring
with Big Data
LEI Yaguo JIA Feng ZHOU Xin LIN Jing
(State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049)
Abstract Mechanical equipment in modern industries becomes more automatic, precise and efficient. To fully inspect its health
conditions, condition monitoring systems are used to collect real-time data from the equipment, and massive data are acquired after
the long-time operation, which promotes machinery health monitoring to enter the age of big data. Mechanical big data has the
properties of large-volume, diversity and high-velocity. Effectively mining characteristics from such data and accurately identifying
the machinery health conditions with advanced theories become new issues in machinery health monitoring. To harness the properties
of mechanical big data and the advantages of deep learn
文档评论(0)