网站大量收购闲置独家精品文档,联系QQ:2885784924

语音识别-科普性介绍.docxVIP

  1. 1、本文档共18页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
研讨性学习报告 随机过程理论在语音识别中的应用 第一章 语音识别总述 1.1语音识别技术简介 语音识别技术就是让机器通过识别和理解过程,把语音信号转变为相应的文本或命令的技术。在当下流行的即时通讯软件(如:微信、QQ等)里,语音识别技术得到了非常广泛的应用。当对方发来一段语音信息而自己不方便收听时便可以使用语音转化功能将语音信息转化成文字信息。此外,在许多输入法(如:讯飞输入法)中也可以使用语音输入功能。用户只需要对着麦克风说话,输入法便可以将语音转换为文字填入输入框,在方便用户的同时也提高了文字输入效率。 语音识别涉及的领域包括:数字信号处理、声学、语音学、计算机科学、心理学、人工智能等,是一门涵盖多个学科领域的交叉科学技术。 语音识别的技术原理是模式识别,其一般过程可以总结为:预处理、特征提取、基于语音模型库下的模式匹配、基于语言模型库下的语言处理、完成识别。 图1.0.1 语音识别过程 第二章 预处理 声音的实质是波。在现如中得到广泛应用的音频文件格式(如:mp3等)都经过了压缩无法直接识别。语音识别所使用的音频文件格式必须是未经压缩处理的wav格式文件。下图是一个波形示例。 图2.0.2 语音波形示例 有了声波源文件输入便可以按照图2.1.1所示的各个步骤进行识别。 2.1静音切除 如图2.1.2所示,在得到的声波信号输入中需要实际处理的信号并不一定占满整个时域,会有静音和噪声的存在。因此,必须先对得到的输入信号进行一定的预处理,消去静音的部分并且滤除噪声的干扰才能对实际需要处理的有效语音进行识别。 噪声处理部分本文已在上文进行过讨论,这里不再赘述。去除静音需要用到VAD算法,本文对其做简单介绍。 2.1.1 VAD算法 VAD算法全称为Voice Activity Detection,又称语音边界检测。其可实现的功能有对语音信号进行打断、去除语音信号中的静音部分从而获取有效语音,还可以去除一部分噪声对后续语音识别过程造成的干扰。VAD主要是对输入语音信号的一些时域或频域特征判断其是否属于静音部分。本文只对这些参数做简要介绍,具体算法不属于本文重点因而不在此做细致讨论。 2.1.2时域参数 时域参数是通过对输入信号在时域上的特征参量进行区分。在信噪比较高的环境下使用时域参数进行区分效果显著。 1.相关性分析 通过对足够短的时间范围内的语音信号进行相关性检测可以初步判定该时间范围内的信号是否属于静音部分。在实际应用中,静音的部分实际上会混有各种各样的噪声,因此并非绝对意义上静音。噪声在各个时间范围内的相关性比较低,而人说话的语音相关性则比较强。因此,在高信噪比的条件下区分成功率很高。然而,由于噪声多种多样,因此相关性分析只适用于区分小部分噪声与语音,这是其局限性所在。 时域能量 静音部分的噪声能量相较于有效语音能量而言要少得多,因此可以通过比较短时间范围内的输入信号能量来判定该段信号是否输入静音部分。而在实际生活中,会出现高能量噪声的情况,此时再用时域能量参数就显得爱莫能助。. 3. 2.1.2频域参数 频域参数的抗噪性能要优于时域参数,但是由于需要用到傅立叶变换等变换方法进行分析域转换,因此相应的计算复杂度较高,花费时间也较长。 谱熵 熵本是源于热力学的参数,用于描述系统的混乱度。在信息论中用于描述信息源的不确定性。 图2.1.1 噪声谱 图2.1.2 语音谱 在实际应用中,噪声谱较为平坦,谱熵较大。而语音能量集中在低频段,谱熵较小,因此可通过谱熵来判断信号属于噪声还是有效语音。谱熵的可靠性不会受信号大小的影响,其大小只与信噪比有关。 自适应子带 即使在很低的信噪比下,语音帧仍然具有较高信噪比的子带,而噪声帧却没有。因此可以根据每帧信号的最小频带所占的该帧总能量的概率来自适应选择子带的多少。 2.2分帧 2.2.1分帧简介 如图2.0.2的有效语音信号波形在时域上是无法对其进行识别的的。因此必须算出有效语音信号在频域上的分布情况,因而需要对有效语音信号做傅立叶变换从而得到其在频域上的分布情况。 图2.2.1 有效语音信号波形图 傅立叶变换的前提是输入信号是平稳的,而如图2.2.1所示的有效语音信号的前三分之一和后三分之二明显不一样,这是由于发音者的发音姿态变换而导致的,所以整体来看语音信号不平稳。但如果取适量小的时间范围内(如图中矩形框圈出的时间范围),仅在该时间范围内做分析的话,发声者的发声姿态基本不变,语音信号就可以看成平稳的,就可以截取出来做傅立叶变换了。将有效语音信号的截取成一帧一帧的平稳信号的过程就称为分帧。 2.2.1分帧时长 由上述的讨论可知,通过分帧操作所得到的每一帧信号需满足如下两个条件: 它必须足够短来保证帧

文档评论(0)

ma982890 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档