- 1、本文档共3页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
倾向得分匹配法介绍
本研究主要考察政府对企业研究开发补贴的影响,由于传统的模型例如采用普通最小二乘法(OLS)估计的多元线性模型难以有效地解决可能存在的样本选择性偏差和遗漏关键变量所造成的内生性这两个关键性问题。因此,本研究主要采用倾向得分匹配法(propensity score matching,PSM)对政府对企业研究开发的补贴与企业发展水平的实证关系进行稳健性的因果推断。
一、模型构建
1、政府补贴的二值分类指标
倾向得分匹配法方法的理论框架是基于“反事实推断模型”,即假定任何因果分析的研究对象都存在可以观测到的和未被观测到的两种结果。以本研究为例,根据建模的需要,首先将样本企业分为两种类型,比较样本企业在“受到补贴”与“没有受到补贴”这两种状态下是否存在系统性差异。一类是获得政府在研究开发方面给予补贴的企业,即处理组(T,treatment group);另一类是没有获得政府补贴的企业,即为控制组(C,control group),由此建立二元虚拟变量Ds={0,1}。当Ds=1时,表示该企业S获得了政府补贴;当Ds=0时,表示该企业S为参照组,没有获得政府补贴。
2、倾向得分匹配估计(PSM)
根据倾向得分匹配法方法的估计思路,假设lnincome表示企业发展水平的结果变量,lnincome1表示获得政府补贴的企业发展水平,lnincome0表示未获得政府补贴的企业发展水平。根据Rubin反事实估计的设定要求,本研究将获得政府补贴对企业发展水平影响的参照组平均处理效应(ATT)、控制组平均处理效应(ATU)和平均处理效应(ATE)分别定义为公式(1)-(3)。
ATT=E[(lnincome1- lnincome0) | X, subside=1] (1)
ATU= E[(lnincome1- lnincome0) | X, subside=0] (2)
ATE=E[(lnincome1- lnincome0) | X] (3)
其中,X为影响企业发展水平的一系列自变量;参照组平均处理效应(ATT)测度的是试验组样本(获取政府补贴的企业样本)在获取政府补贴前后发展水平变化的期望值;控制组平均处理效应(ATU)测度的是对照组样本(未获取政府补贴的企业样本)在获取政府补贴前后发展水平变化的期望值;平均处理效应(ATE)测度的是样本满足“个体处理效应稳定假设”前提下,同一样本企业在获取政府补贴前后发展变化的期望值。
3、倾向得分匹配过程(matching)
在公式(1)和(2)中,E(lnincome0 | X, subside=1)表示获得补贴的企业如果不接受政府补贴时的企业发展水平,E(lnincome1 | X, subside=0)表示没有获得补贴的企业如果接受政府补贴时的企业发展水平,由此可以看出,这两个期望均值是非事实以及不可观测的。解决这一问题的关键思路是,如果可以找到与获得政府补贴的企业“相似”的未获取政府补贴的企业,那么,就可以通过观察未获取补贴企业来判断接受补贴的企业在反事实情况下的发展水平,这一过程被称之为匹配过程(matching)。
通过匹配,可以使得获取补贴的企业和未获取补贴的企业所有的特征变量都尽量相同,但这些特征变量的权重在很多情况下难以衡量。基于此,采用倾向得分匹配法则可以将众多指标合成为一个得分(score),对得分相近的企业进行匹配,因此,可以采用Probit或logit二元选择模型来估计企业接受补贴的概率值(公式(4))。
(4)
其中,p是企业获取政府补贴的概率,X为一系列影响企业获得政府补贴的因素,即匹配变量。将这些匹配变量进行回归,进而可以计算得到每一个企业是否获取政府补贴的倾向得分(propensity score)。根据这些倾向得分,我们可以将得分相近的企业进行匹配,通常采用的近邻匹配方法有K近邻匹配、卡尺匹配和卡尺K近邻匹配。本研究分别采用上述三种近邻匹配方法进行实证检验,近邻匹配方法的基本思想是为每个获取政府补贴的企业前向或者后向寻找唯一得分最为邻近的未获取政府补贴的企业作为前者的匹配对象。
4、匹配平衡性检验
最后,要对匹配的结果进行平衡性检验,以检测本研究的匹配结果是否可靠。如果匹配结果良好,则两组企业匹配后在匹配变量上应该是不存在显著差异的,这表明本研究选取的匹配变量和匹配方法都是合适的,匹配后的获得政府补贴的企业与未获得补贴的企业基本一致。
您可能关注的文档
- 《诲人不倦》-优秀课件.pptx
- 《闻一多先生的说和做》优秀课件分析.ppt
- 《课堂研究》读后感.doc
- 《青花》优秀课件PPT.ppt
- 【培训教材】拉动式生产方式.ppt
- 【人教版】高中化学选修5知识点总结:第四章生命中的基础有机化学物质.docx
- 【正式】工业的区位选择公开课.ppt
- 【辅导学校、教育机构】老师和家长的沟通ppt.ppt
- 【原创新课堂】2017春人教版八年级政治下册期末测试题.doc
- 七年级数学(下)第五章知识点整理.doc
- 2024年江西省寻乌县九上数学开学复习检测模拟试题【含答案】.doc
- 2024年江西省省宜春市袁州区数学九上开学学业水平测试模拟试题【含答案】.doc
- 《GB/T 44275.2-2024工业自动化系统与集成 开放技术字典及其在主数据中的应用 第2部分:术语》.pdf
- 中国国家标准 GB/T 44275.2-2024工业自动化系统与集成 开放技术字典及其在主数据中的应用 第2部分:术语.pdf
- GB/T 44285.1-2024卡及身份识别安全设备 通过移动设备进行身份管理的构件 第1部分:移动电子身份系统的通用系统架构.pdf
- 《GB/T 44285.1-2024卡及身份识别安全设备 通过移动设备进行身份管理的构件 第1部分:移动电子身份系统的通用系统架构》.pdf
- 中国国家标准 GB/T 44285.1-2024卡及身份识别安全设备 通过移动设备进行身份管理的构件 第1部分:移动电子身份系统的通用系统架构.pdf
- GB/T 44275.11-2024工业自动化系统与集成 开放技术字典及其在主数据中的应用 第11部分:术语制定指南.pdf
- 中国国家标准 GB/T 44275.11-2024工业自动化系统与集成 开放技术字典及其在主数据中的应用 第11部分:术语制定指南.pdf
- 《GB/T 44275.11-2024工业自动化系统与集成 开放技术字典及其在主数据中的应用 第11部分:术语制定指南》.pdf
文档评论(0)