基于视频的运动目标检测与跟踪算法分析-计算机应用技术专业论文.docxVIP

基于视频的运动目标检测与跟踪算法分析-计算机应用技术专业论文.docx

  1. 1、本文档共72页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第 第 PAGE IV 页 第 第 III 页 出了一种将 Kalman 滤波器与 Mean Shift 相融合的算法,能比较稳定快 速地对运动目标进行跟踪,并有效地处理了遮挡问题。 关键词:目标检测,目标跟踪,混合高斯模型,LBP 纹理模型,D-S 证据 理论,Kalman 滤波,Mean Shift 跟踪 Video-based Moving Targets Detecting and Tracking Algorithm Research ABSTRACT Computer intelligent video surveillance system (CIVSS) is a front topic in Computer Vision domain. It spans many subjects including computer science,machine vision,image engineering,pattern analysis,artificial intelligence,etc. CIVSS can automatically analyze the sequence of images by the methods of computer vision and video analysis. The system can detect, locate,recognize and track objects in a moving environment in real-time. Furthermore,it can also analyze and judge the movement of objects. This thesis focuses on the background modeling and moving object detection,as well as moving object tracking. Background modeling is an important issue in accurate detection of moving objects. Existing work in the area has mostly addressed scenes that consist of static structures. In this paper, we present a novel non-parametric foreground-background model which explores the complex temporal and spatial dependencies in nonstationary scenes. The model adapts to scenes which contain small motions such as tree branches and water ripple, even shadow. The Model uses GMM(Gaussian Mixture Model) to compute the probability of foreground pixel with color information. It also uses LBP(Local Binary Pattern) texture model to compute the probability of foreground pixel with texture information. At last, it uses data fusion algorithm named D-S evidence theory to do a information fusion in the decision level. Extensive experiments with nonstationary scenes demonstrate the utility and performance of the proposed approach. At the aspect of object tracking, considering the drawbacks of the current Mean Shift tracking algorithm, we present a new algorithm combining the Kalman filter with Mean Shift. And the experiment results show that the moving objects

您可能关注的文档

文档评论(0)

1234554321 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档