基于视觉的运动检测与手部动作识别-模式识别与智能系统专业论文.docxVIP

基于视觉的运动检测与手部动作识别-模式识别与智能系统专业论文.docx

  1. 1、本文档共93页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
VI VI 和基于像素的背景模型相结合,构建了一个有效的层次背景模型。在 对于局部区域的建模中,本文还提出了一种新的局部区域描述符。该 描述符综合运用色彩不变量和纹理特征,对局部特征进行了更准确的 描述,对动态背景和光照变化等具有更好的适应性。 在准确提取前景的基础上,本文对手部的特定动作进行识别。手 部动作识别在人机交互、视频监控等方面有丰富的应用。本文的手部 动作识别算法分为三个主要部分:手部特征检测、基本动作分割和动 作轨迹识别。本文算法将三维的动作转化为二维的轨迹,并利用 Hausdorff距离来实现具有平移和缩放变换的轨迹识别。 关键词:运动检测,背景模型,颜色矩,码书,阴影去除,Hausdorff 距离,动作识别 VII VII Vision-based moving object detection and gesture recognition ABSTRACT Identifying moving objects from a video sequence is a fundamental and critical task in many computer-vision applications. A common approach is to perform background subtraction, which identifies moving objects from the portion of a video frame that differs significantly from a background model. There are many challenges in developing a good background subtraction algorithm. First, it must be robust against changes in illumination. Second, it should avoid detecting non-stationary background objects such as swinging leaves, rain, snow,and shadow cast by moving objects. Based on the study of existing methods, I propose several modified methods to overcome these problems. This paper combines HSV shadow suppression into the background model to deal with shadows, highlights and illumination changes. To deal with moving backgrounds, this paper propose a new background update strategy which include the foreground information in the model. we propose a method that combines pixel-based and block-based approaches into a single framework. We show that efficient hierarchical backgrounds can be built by considering that these two approaches are complementary VIII VIII to each other. In addition, a novel descriptor is proposed for block-based background modeling in the coarse level of the hierarchy. Quantitative evaluations show that the proposed hierarchical method can provide better results than existing single-level approaches. Based on the accurate detection of foreground moving people, in this thesis, we address the issue of detecting and recognizing hand gesture in video sequences. First

文档评论(0)

1234554321 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档