基于神经网络的控制器的研究-控制理论与控制工程专业论文.docxVIP

基于神经网络的控制器的研究-控制理论与控制工程专业论文.docx

  1. 1、本文档共58页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
AbstractThe Abstract The general control methods cart’t meet the production requests in the industrial process because of the complex character and high request on the industry.So the thesis discusses using ANN control methods to meet the control request and improve control effect. The identification of the systems based on neural network iS discussed.NN PID control and the composite control based on BP NN and GA are proposed based on the identification.The simulation experiments are made. The main works ofthis dissertation are summarized as follows: 1.Because BP neural network’S convergence speed is slow and it is easy to be trapped in local minima,the improved algorithm is given.The comparison between there iS made. 2.To the identification of the controlled object of the system,two kinds of identification methods are put forward,including BP neural network identification and RBF neuml network identification.The methods to improve the generalization ability of neural networks are summarized.The deep discuss on the identification is made. 3.According to the identification methods based on neural network,the control strategies is proposed.Another is the composite control based on BP NN and GA,which use the ability of the global optimization of GA to optimize the weights of neural network.The simulation results indicate this composite control Can be in progress at overall and overcome the disadvantage that BP algorithm is sensitive to the initial weights value.This control Can get better control results and improve the instability from the uncertainties,nonlinearity and large inertia in some industrial systems. The simulation results indicate that this composite neuraI networks controller. which has the STC structure based on the improved algorithm,Can reduce overshoot and make system effective in robustness and anti jamming,meanwhile prove the superiority ofthis controller tO the PID controller. Key words:Neural network,BP algorithm,System identification,Genetic algo

文档评论(0)

1234554321 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档