网站大量收购独家精品文档,联系QQ:2885784924

基于时域建模的自动语音识别-计算机工程与应用.PDF

基于时域建模的自动语音识别-计算机工程与应用.PDF

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Computer Engineering and Applications 计算机工程与应用 2017 ,53(20 ) 243 基于时域建模的自动语音识别 用 王海坤,伍大勇,刘 江,王士进,胡国平,胡 郁 应 WANG Haikun, WU Dayong, LIU Jiang, WANG Shijin, HU Guoping, HU Yu 与 科大讯飞股份有限公司 研究院,合肥 230088 程 Research of IFLYTEK CO., LTD, Hefei 230088, China g 工 r o WANG Haikun, WU Dayong, LIU Jiang, et al. Automatic speech recognition based on time domain modeling. Com- . j puter Engineering and Applications, 2017, 53 (20 ):243-248. 机 a 算 e Abstract :End-to-end neural networks can automatically learn feature transformation from original data, which can solve c . the mismatch between hand designed features and specific tasks. The traditional end-to-end neural network for speech rec- 计 w ognition uses a time domain convolution network as the feature extraction model, recurrent neural network and full con- nected feed-forwarddeep neural network as the acoustic model, which has some limitations in performance and efficiency. w From the aspects of the performanceof thefeature extraction module and the training efficiency of the acoustic model, an w end-to-end speech recognition model combining the multi-time and frequency resolution convolution and the feed- forward neural network with memory modules is proposed. On the real recording test dataset, the proposed method reduces the word error rate by 10%, training time by 80% compared with the traditional method. Key words :convolution neural network; recurrent neural network; acoustic model; end-to-end neural network 摘 要:端到端神经

您可能关注的文档

文档评论(0)

fengruiling + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档