基于人工智能算法的图像识别与生成.doc

基于人工智能算法的图像识别与生成.doc

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于人工智能算法的图像识别与生成   摘要:本次报告的工作是利用PCA,SVM以及人工神经网络(ANN)实现对人脸的特征提取、分类和预测。然后利用GAN(生成对抗网络)实现对手写数字的生成,并用SVM做预测,验证生成效果。   本次报告采用的数据源自剑桥大学的ORL 人脸数据库,其中包含40个人共400张人脸图像。   关键词:人工智能;图像识别;数据   中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2018)13-0173-02   1 PCA降维   PCA(principal components analysis)即主成分分析,又称主分量分析。旨在利用降维的思想,把多指标转化为少数几个综合指标。   首先我们给出了数据库的平均脸的图像,并利用PCA对人脸降维,通过改变降低到的维度研究了保留维度的多少带来的影响。最后给出了每一个维度的特征脸图像,讨论了每一个维度所能够代表的人脸信息。   1.1 平均脸   首先,我们将数据库中400张人脸按行存储到一个矩阵中,即每一行为一张人脸(10304像素),每张人脸共10304维特征。我们对每一个维度去平均,构成一个新的行向量,这就是平均脸。   平均脸反映了数据库中400张人脸的平均特征,可以看清人脸的轮廓,但无法识别人脸的局部细节。   1.2 降低至不同维度时还原脸的情况   从左到右从上到下依次是同一张脸降低至10,30,50,100,200,250,300,350,400的图像。可以看到,随着保留维数的增多,图像越清晰,与原图的差异越小。   1.3 提取单一维度的特征做还原   为了研究不同维度所代表的人脸的信息,我们把PCA之后的每一个特征向量单独提取出来对人脸做还原,还原的时候不加入平均脸并且做直方图均衡化。   结果如下:   每一张图像下方的数字代表了PCA之后按特征值从大到小排序的顺序,比如第一张图代表PCA之后最大特征值所对应的特征向量还原出的人脸。   特征累积图的纵坐标代表了所保留的特征占总特征的比例。它是这样计算出来的,假设保留k维信息,则纵坐标值为这k个特征值的和除以总的400(400*10304的矩阵,最多有400个非零特征值)个特征值的和。   从图4可以看出,当保留维数为100维时,即能保留人脸90%的信息,而之后随着保留维数的增多,保留信息的增多变缓。   同样的结论也可由提取每个维度所代表的特征获得。从前到后观察实验所得的图像,我们可以发现,人脸变得越来越模糊,到100维以后已经分辨不清人脸了。这就说明前面的维度反映了大众脸的特征,而越往后面的维度则反映不同人脸的细节,比如头发长短等等,以及图片噪声。   2 SVM对人脸分类   SVM(支持向量机)是Corinna Cortes和Vapnik等于1995年首先提出的,在机器学习中,支持向量机是与相关的学习算法有关的监督学习模型,可以分析数据,识别模式,用于分类和回归分析。   2.1 制作多分类器   用PCA对人脸降维以后,我们用SVM将400张人脸进行分类。我们取每个人的前五张照片合并起来共200张作为训练集,每个人后五张照片合并起来共200张作为测试集。40个人即有40个标签,也就是有40类,但SVM只能作二分类器,因此我们利用二分类器生成多分类器,基本思想是制作C(40,2)个一对一分类器(也就是每两个类别一个),每一张照片都分别用所有一对一分类器分类,分类结果存储到投票矩阵中,分类结果就是投票矩阵中数字最大的那个。   分类前,我们还需对PCA后的数据进行归一化处理,将图像矩阵的每一个元素映射到(-1,1)之间。   2.2 参数选择及程序结果   1)分类数据:每人取前五张做训练,后五张做测试(不加入自己的人脸)   SVM参数设定:k = 75(PCA降至75维)   Sigma = 30   c = 15   预测准确率: accuracy=0.8950   2)每人取前五张做训练,后五张做测试(加入自己的人脸)   SVM参数同上,   预测准确率: accuracy=0.8585   我们发现,当加入自己拍摄的人脸图像后,预测准确率有一定的下降,这可能是由于拍照时的光线,角度等造成的。   3 ANN对人脸分类   人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。   为了方便与SVM的结果作比

文档评论(0)

beoes + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档