广义隐马尔科夫模型及其在切削颤振识别中的应用-机械电子工程专业论文.docxVIP

广义隐马尔科夫模型及其在切削颤振识别中的应用-机械电子工程专业论文.docx

  1. 1、本文档共50页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
华中 科 技 华 中 科 技 大 学 硕 士 学 位 论 文 II II Abstract In engineering practice, two types of uncertainty are ubiquitous when modeling and observing the physical processes. In most cases, traditional methods can only characterize variability and randomness. However, quantify variability and epistemic uncertainty separately can increase the reliability of observation and modeling. In this thesis, the Generalized Hidden Markov Model (GHMM) is proposed based on the Generalized Interval Probability theory and the Hidden Markov Model (HMM) algorithms. Furthermore, the toolbox of the model is established and then tested in the prediction of temperature rise of feed system bearing. A new approach in recognizing cutting states based on Generalized Hidden Markov Model is proposed. First, research on the uncertainty theory and applications of HMM is carried out. As uncertainty is ubiquitous in states recognition and prediction, the basic algorithms of GHMM is proposed based on the Generalized Interval Probability theory and HMM to solve the problem. Matlab toolbox of the GHMM is established based on the basic algorithms of GHMM. A further study in prediction of bearing temperature rise by using the GHMM toolbox is accomplished which verifies the effectiveness and feasibility of the algorithm and the toolbox. A milling experiment under variable conditions is carried out and the vibration signal of the milling spindle obtained during the experiment is used to identify the milling state, using the wavelet packet energy as the feature vector. The result shows that the Generalized Hidden Markov Model is efficient in cutting state recognition under small sample data, which forms the foundation of the prediction of cutting state transformation. Keywords: Uncertainty, Generalized Interval Probability, Generalized Hidden Markov Model, Cutting Chatter PAGE PAGE IV 目 录 摘 要 I HYPERLINK \l _bookmark0 Abstract II HYPERLINK \l _bookmark1 1 绪 论 HYPERLINK \l _bookmark2 1.1 选题概述 (1) HYPERLINK \l

您可能关注的文档

文档评论(0)

1234554321 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档