- 1、本文档共12页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
word专业整理
学习资料 整理分享
实验三:弯曲波导结构设计
一、实验目的:
掌握弯曲波导的结构、工作原理
了解弯曲波导的分析方法及其仿真技术
二、实验原理:
在以玻璃为代表的透明介质衬底的表面上,附着上折射率比衬底略高、厚度可以与光波长相比较的薄膜,光就会被封闭于这种高折射率的薄膜层内构成波导。在二维光波导的情况下,只有沿厚度方向对光是封闭的,因此波导中的光可以沿表面自由传播。这么一来光就有可能因为衍射而被全部散失掉。但是,实际上利用光波导组成光调制器和光开关的时候,光沿表面方向也必须是封闭的,光波的分路、弯曲、耦合等也必须都能够控制,这就是三维光波导。
作为变换光路用的三维光波导器件,弯曲波导占据重要地位。其中,弯曲半径R越小,传输距离越短,越容易产生光路变换。但是弯曲波导的损耗随着弯曲半径R的减小而增加。图1表示弯曲部分的导模场分布。在弯曲波导中,为了使光波在传输过程中,其波面不被破坏,弯曲部分外侧波导光的相速度必须大于内侧波导光的相速度。因此,在弯曲外侧所看到的光波中,在部分的相速度会超过光速。这就意味着在部分的光波在半径方向上存在着辐射损耗。当设计弯曲波导时,正确评估这部分辐射损耗至关重要。假定在弯曲部分伴随着辐射而造成的波导光衰减常数为,在的场合下,可以得出
图1 弯曲波导的导模场分布
再者,由图1可知,弯曲部分导模场分布偏向拐弯的外侧,该现象被称之为边缘模,这种场分布现象与波导的直线部分的场分布是不同的。由此而产生了弯曲部分入口处的场分布不匹配,入射光的部分功率辐射进衬底,这种损耗叫做模变换损耗,它与辐射损耗一起构成了决定弯曲波导损耗的主要原因。
三、实验内容:
利用OptiBPM6.0设计一个弯曲波导并观察并分析相关结果。
四、实验方法:
1、创建材料库:
材料库参数:
Materials-Dielectric1:
Name: cladding
2D Isotropic Refractive :1.442
3D Isotropic Refractive :1.442
Name: guide
2D Isotropic Refractive :1.45
3D Isotropic Refractive :1.45
Profiles-Channel:
Name: channel
2D Profile definition material: guide
晶体参数:
Profile:channel
Wafer Dimensions参数:
Length: 800
Width:50
2D Wafer Properties参数:
Material:cladding
2.添加波导和输入平面:
(1)波导参数如下表:
波导名称
Start offset
End offset
Width
Waveguide radius
Horizontal
Vertical
Horizontal
Vertical
Arc waveguide
0
-10
800
-8
4
4000
(2)添加输入平面
(3)输入面的参数中将Z position 的值设置为2.0000。
3、仿真并观察仿真结果。
4、设计原程序
SIMULATION PARAMETERS
Simulation Type: 2D
Starting Field:
Type: Modal
Z Position: 2.000000
Label: InputPlane1
Wavelength (祄): 1.550000
Global Reference Index:
Type: Modal
Value: (1.44635996937882, 0.00000000000000)
User Interface Configuration:
Number of Displays: 100
Simulation Technique: Simulate As Is
2D PARAMETERS
Polarization: TE
Mesh:
Number of points/祄: 9.9800
Number of points: 500
BPM Solver: Paraxial
Engine: Finite Difference
Scheme Parameter: 0.5000
Propagation Step: 1.5500
Wafer Width (祄): 50.0000
Boundary Condition: PML
Layers: 6
Theoretical Reflection Coeffi
文档评论(0)