Game Playing课件.ppt

  1. 1、本文档共36页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Game Playing Mini-Max search Alpha-Beta pruning General concerns on games Why study board games ? One of the oldest subfields of AI (Shannon and Turing, 1950) Abstract and pure form of competition that seems to require intelligence Easy to represent the states and actions Very little world knowledge required ! Game playing is a special case of a search problem, with some new requirements. Types of games Bridge, poker, scrabble, nuclear war Backgammon, monopoly Chess, checkers, go, othello Chance Deterministic Imperfect information Perfect information Sea battle Why new techniques for games? “Contingency” problem: We don’t know the opponents move ! The size of the search space: Chess : ~15 moves possible per state, 80 ply 1580 nodes in tree Go : ~200 moves per state, 300 ply 200300 nodes in tree Game playing algorithms: Search tree only up to some depth bound Use an evaluation function at the depth bound Propagate the evaluation upwards in the tree MINI MAX Restrictions: 2 players: MAX (computer) and MIN (opponent) deterministic, perfect information Select a depth-bound (say: 2) and evaluation function MAX MIN MAX - Construct the tree up till the depth-bound - Compute the evaluation function for the leaves 2 5 3 1 4 4 3 - Propagate the evaluation function upwards: - taking minima in MIN 2 1 3 - taking maxima in MAX 3 Select this move The MINI-MAX algorithm: Initialise depthbound; Minimax (board, depth) = IF depth = depthbound THEN return static_evaluation(board); ELSE IF maximizing_level(depth) THEN FOR EACH child child of board compute Minimax(child, depth+1); return maximum over all children; ELSE IF minimizing_level(depth) THEN FOR EACH child child of board compute Minimax(child, depth+1); return minimum over all children; Call: Minimax(current_board, 0) Alpha-Beta Cut-off Generally applied optimization on Mini-max. Instead of: first creating the entire tree (up to de

文档评论(0)

liuxiaoyu98 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档