- 1、本文档共23页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
.
.
深度神经网络全面概述 从基本概念到实际模型和硬件基础
深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由 IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。
目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助 DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署 DNN 的关键。
论文地址:/pdf/1703.09039.pdf
本文旨在提供一个关于实现 DNN 的有效处理(efficient processing)的目标的必威体育精装版进展的全面性教程和调查。特别地,本文还给出了一个 DNN 综述——讨论了支持 DNN 的多种平台和架构,并强调了必威体育精装版的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低 DNN 计算成本。本文也会对帮助研究者和从业者快速上手 DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的 DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。
读者将从本文中了解到以下概念:理解 DNN 的关键设计考量;通过基准和对比指标评估不同的 DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同 DNN 有效处理技术的设计有效性;理解必威体育精装版的实现趋势和机遇。
一、导语
深度神经网络(DNN)目前是许多人工智能应用的基础 [1]。由于 DNN 在语音识别 [2] 和图像识别 [3] 上的突破性应用,使用 DNN 的应用量有了爆炸性的增长。这些 DNN 被部署到了从自动驾驶汽车 [4]、癌症检测 [5] 到复杂游戏 [6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而 DNN 的??众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。
然而 DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是 GPU),已经成为许多 DNN 处理的砥柱,但提供对 DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对 DNN、理解 DNN 行为的各种工具、有效加速计算的各项技术的概述。
该论文的结构如下:
Section II 给出了 DNN 为什么很重要的背景、历史和应用。
Section III 给出了 DNN 基础组件的概述,还有目前流行使用的 DNN 模型。
Section IV 描述了 DNN 研发所能用到的各种资源。
Section V 描述了处理 DNN 用到的各种硬件平台,以及在不影响准确率的情况下改进吞吐量(thoughtput)和能量的各种优化方法(即产生 bit-wise identical 结果)。
Section VI 讨论了混合信号回路和新的存储技术如何被用于近数据处理(near-data processing),从而解决 DNN 中数据流通时面临的吞吐量和能量消耗难题。
Section VII 描述了各种用来改进 DNN 吞吐量和能耗的联合算法和硬件优化,同时最小化对准确率的影响。
Section VIII 描述了对比 DNN 设计时应该考虑的关键标准。
二、深度神经网络(DNN)的背景
在这一部分,我们将描述深度神经网络(DNN)在人工智能这个大框架下的位置,以及一些促进其发展的的概念。我们还将对其主要的发展历程和现阶段主要的应用领域做一个简单的介绍。
1. 人工智能和深度神经网络
根据 John McCarthy 的论述,深度神经网络(也称为深度学习)是人工智能(AI)大框架下的一部分。而人工智能(AI)是利用科学与工程学创造具有如同人类那样能实现目标的智能机器。人工智能这个词就是这位计算机科学家在上个世纪 50 年代所创造出的。深度学习和整个人工智能的关系就如下图所示。
图 1:深度学习在人工智能大框架下的位置
2. 神经网络和深度神经网络(DNN)
神经网络从神经元涉及对输入值求加权和进行计算这一概念而获得灵感。这些加权和对应于突触完成值的
文档评论(0)