第五章 模型的建立与估计中的问题及对策.ppt

第五章 模型的建立与估计中的问题及对策.ppt

  1. 1、本文档共85页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第五章 模型的建立与估计中的问题及对策 我们已学到了许多有用的计量经济分析方法,如建立模型、估计参数、假设检验、预测、非线性模型的线性化,用虚拟变量将定性因素引入模型等。 可是,我们所使用的最小二乘法,以及由此而得到的OLS估计量令人满意的性质,是根据一组假设条件而得到的。在实践中,如果某些假设条件不能满足,则OLS就不再适用于模型的估计。在这种情况下,分析方法就需要改变。下面列出实践中可能碰到的一些常见问题: l 误设定(Misspecification 或specification error) l 多重共线性(Multicollinearity) l 异方差性(Heteroscedasticity) l 自相关(Autocorrelation) 本章将对上述问题作简要讨论,主要介绍问题的后果、检测方法和解决途径。 第一节 误设定 采用OLS法估计模型时,实际上有一个隐含的假设,即模型是正确设定的。这包括两方面的含义:函数形式正确和解释变量选择正确。在实践中,这样一个假设或许从来也不现实。我们可能犯下列三个方面的错误: 选择错误的函数形式 遗漏有关的解释变量 包括无关的解释变量 从而造成所谓的“误设定”问题。 五. 处理多重共线性问题的原则 1. 多重共线性是普遍存在的,轻微的多重共线性问题可不 采取措施。 3. 如果模型仅用于预测,则只要拟合好,可不处理多重共线性问题,存在多重共线性的模型用于预测时,往往不 影响预测结果。 2. 严重的多重共线性问题,一般可根据经验或通过分析回归结果发现。如影响系数的符号,重要的解释变量t 值很低。要根据不同情况采取必要措施。 第三节 异方差性 回顾我们应用OLS法所需假设条件,其中大部分是有关扰动项的统计假设,它们是: (1)E(ut)=0, t=1,2,…,n. 扰动项均值为0 (2)Cov(ui,uj) = E(uiuj) =0, i≠j. 扰动项相互独立 (3)Var(ut) = E(ut2) = ?2 , t=1,2,…,n. 常数方差 (4)ut ~N(0,?2). 正态性 对于(1),我们可论证其合理性。而第(4)条,也没有多大问题。大样本即可假定扰动项服从正态分布。而对于(2),(3)两条,则无法论证其合理性。实际问题中,这两条不成立的情况比比皆是。下面即将讨论它们不成立的情况,即异方差性和自相关的情形。 一 异方差性及其后果 1. 定义 若Var(ut) = = 常数的假设不成立,即 Var(ut) = ≠常数,则称扰动项具有异方差性。 2. 什么情况下可能发生异方差性问题? 解释变量取值变动幅度大时,常数方差的假设往往难以成立。异方差性主要发生在横截面数据的情况,时间序列问题中一般不会发生,除非时间跨度过大。 例:Yi = α+βXi+ ui 其中:Y=指定规模和组成的家庭每月消费支出 X=这样的家庭的每月可支配收入 设X的N个观测值取自一个家庭可支配收入的横截面样本。某些家庭接近于勉强维持生存的水平,另一些家庭则有很高的收入。不难设想,低收入家庭的消费支出不大可能离开他们的均值E(Y)过远,太高无法支持,太低则消费将处于维持生存的水平之下。因此,低收入家庭消费支出额的波动应当较小,因而扰动项具有较小的方差。而高收入家庭则没有这种限制,其扰动项可能有大得多的方差。 这就意味着异方差性。 3.异方差性的后果 (1)参数估计量不再具有最小方差的性质 异方差性不破坏OLS估计量的无偏性,但不再是有效的。 事实上,异方差性的存在导致OLS估计量既不是有效的,也不具有渐近有效性。 (2)系数的显著性检验失去意义 更为严重的是,在异方差性的情况下, 矩阵主对角元素不再是OLS估计量方差的无偏估计量,从而导致系数的置信区间和假设检验结果不可信赖。 例如在双变量模型中,如果 倾向于低估 的真实方差,则置信区间可能要比实际的窄,给我们一个错误信息,好象得到 的点预测值很精确。 二 异方差性的检验 异方差性后果的严重性意味着我们在实践中必须了解是否存在异方差性。 常用的检验方法有: 斯皮尔曼等级相关检验法(Spearman Rank Relation test) 戈德弗尔德—匡特检验法(Goldfeld Quandt test) 格里瑟检验法(Glesj

文档评论(0)

zhuliyan1314 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档