- 1、本文档共7页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
应用于AQM神经网络PID控制器优化设计工作方案
应用于AQM的神经网络PID控制器优化设计-设计论文
应用于AQM的神经网络PID控制器优化设计
周雪寒
(桂林电子科技大学,广西 桂林 541004)
【摘要】主动队列管理(AQM)在解决网络拥塞问题中扮演着重要角色,为了解决AQM的PID参数不能随时间调整,且不能适应动态和非线性网络的缺点,本文提出了一种新的PID控制器算法。新算法结合了PID控制和神经网络算法两者的优点,同时新的AQM算法在时延、吞吐量和稳定性方面均优于一般的PID控制器。
关键词 神经网络;PID控制器;AQM
Optimised Design of Neural Network PID Controller Applied in AQM
ZHOU Xue-han
(Gui Lin University of Electronic Technology, Guilin Guangxi 541004, China)
【Abstract】active queue management (AQM) plays a significant role in network congestion. A new adaptive pid controller for AQM is presented to overcome the shortcomings of pid AQM, such as parameters cannot be adjusted with time, cannot be adapted to the dynamic and nonlinear network. The new algorithm combines the advantages of both PID controller and neural network algorithm,at the same time, the new AQM algorithm is superior to a typical pid controller on the time delay, throughput and queue stability.
【Key words】Neural network。 PID controller。 AQM
0引言
近年来人们对计算机网络的服务质量要求越来越高,路由器的主动队列管理(AQM)是一项减少端到端的时间延时和吞吐量的重要技术。随机早期检测算法(Random Early Detection, RED)是最早提出的符合主动队列管理思想的算法,它的基本思想是在缓冲区溢出或网络拥塞发生之前随机的丢弃数据包。对于不同的网络条件,RED算法的参数很难调整,同时RED算法的参数对不同网络负载非常敏感。
随着TCP协议和模拟计算机网络的发展,基于控制理论的AQM成为了一个研究热点。相比RED算法,在AQM中基于经典控制理论的P与PI控制器都有很好的队列稳定性,但它们的响应速度较慢。文献1基于增益和相位裕度提出了一种PID控制器,它比RED算法具有更好的队列稳定性,但PID控制器的参数很难调整,尤其是在不确定的时变网络环境中更难调整。为了解决AQM和ECN标记的问题,文献[2]提出了一种基于神经网络的自适应PID控制器,为了克服PID控制器在AQM中的不足,本文基于神经网络提出了一种改进的PID控制算法,新算法结构简单易于实现。
1TCP/AQM系统模型
2基于神经网络PID控制器的设计
文献[4]首先提出了基于神经网络的PID控制器,本文基于在线自学习和任意函数近似表示性能,利用PID控制器解决网络拥塞问题。在AQM中,我们根据网络的变化对损失概率进行调整,由于信息源能根据丢包程度不同随时间进行响应,因此我们采用一个简单的基于神经网络的PID控制器(SPIDNN)作为输出。SPIDNN是三层前馈神经网络,其结构设定为2 * 3 * 1。神经网络的输入层有两个神经元,可以接收两个输入信息。隐含层有三个神经元,它们分别是比例、积分、微分神经元,这些神经元可以实现比例、积分、微分操作。输出层只有一个神经元作为控制器的输出,图2是一个基于神经网络的PID控制器框图。
3两种提高SPIDNN学习率的方法
一种是附加动量法。在从输入层到输出层网络权值学习的过程中,我们不仅要考虑误差在梯度中所起的作用,同时还要考虑误差的影响趋势。为了避免在学习过程中的权值振荡,收敛速度慢和目标函数陷入局部极小值,我们可以用附加动量法。该方法从本质上考虑先前的权值在当前权值中所起的作用,因此它能确保权值调整方向的正确性,最终通过反响传播算法得到新的权值。权值调整的新规则如下:
在上式中K是训练次数,
文档评论(0)