高温高压阀门铸件制造工艺及应用.docVIP

高温高压阀门铸件制造工艺及应用.doc

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
高温高压阀门铸件制造工艺及应用 1技术要求。 1.1CF8C化学成分及力学性能要求 CF8C化学成分要求及力学性能要求(ASTMA351)见表1、表2所示。 1.2金相检测。 逐件进行金相结构和侵蚀试验,试验按ASTM E381执行,夹杂物级别要求符合表3的要求;不允许有尺寸大于ASTME45标准中的2.5级的偏析和带状不均匀组织;铁素体含量4%~16%。 1.3晶间腐蚀检测。 逐件进行敏化态晶间侵蚀试验,试验方法和试验结果应符合ASTMA262E法的要求。 1.4无损检测 1.4.1射线探伤检测 逐件进行100%射线探伤检测,检测范围符合ASMEB16.34,检测方法按MSSSP54标准进行,检测结果应符合:气孔/缩孔,不小于2级;其他,不允许 表1 CF8C化学成分 C Si Mn S P Cr Ni Mo Nb ≤0.08 ≤2.00 ≤1.50 ≤0.015 ≤0.020 18.0~21.0 9.0~12.0 ≤0.50 8×C~1.00 表2 CF8C力学性能 Rm/MPa ReL/MPa ALo/% ≥485 ≥205 ≥30 表3夹杂物级别 硫化物(A) 硅酸盐(B) 氧化铝(C) 球化氧化物(D) 总级别数 ≤1.0级 ≤1.5级 ≤1.0级 ≤2级 ≤5级 注:Nb含量为C含量的1~8倍。 1.4.2液体渗透检测 逐件进行100%液体渗透检测,检测按ASTME165标准进行,检测结果应符合下列要求:①任何线性显示的缺陷长度不大于2mm;②单个圆形缺陷的尺寸不大于4mm;③密集缺陷(指尺寸小于0.5mm的集中缺陷)累积长度在任何100mm×100mm的面积中不大于2mm。 2制造工艺 加氢裂化装置阀门铸件虽在局部结构上存在着差异,但共同具备的结构特点是,外形呈三通管状,各管道中心线在同一平面上,管壁较厚且基本均匀,铸件材质一般为耐蚀不锈钢CF8C。我公司在研制阀门铸件的过程中积累了一些经验,文中将以典型的零件DN400-2500lb阀门的铸造为例加以分析阐述 2.1铸造工艺 2.1.1铸造工艺分析 DN400-2500lb阀门的结构见(图1)。该铸件毛坯重量为4300kg,外轮廓尺寸:1538mm×1310mm×840mm。铸件外形呈三通管状,各管分别为圆环形管道,各管道中心线在同一平面上,同一轴向的两个管道管口处有法兰,与其垂直方向的管道管口部位壁厚增大,各管口全部加工,管道主体壁厚为115mm,管壁较厚且基本均匀,管道相交处形成热节。 图1阀门铸件剖面结构图 该阀门铸件主体为圆环形管,具有圆环形铸件的共同特征,各管之间同心度难以保证,铸件壁厚公差较难控制,环形管道如何做到三个方向的管道同时补缩难度较大,所以在设计铸造工艺时需充分考虑这些因素。 2.1.2铸造工艺设计 (1)铸件收缩率的确定。该铸件选用的CF8C材质属于奥氏体不锈钢,在受阻收缩的请况下,结合铸件结构形状,铸件外腔缩尺采用2.0%,内腔缩尺采用1.5%。 (2)分型面选择。阀门要求各管道中心线在同一平面上,各环形管道补缩较困难,因此,以三个管口的中心所在平面为分型面,将铸件分为上下两半(图2)。 图2阀门铸件工艺结构图 分型面的选择经过阀门铸件各管口的中心,使分型面所在的平面为阀门铸件的最大截面,保证阀门铸件各管口轴向中心线在同一平面上,减少铸造砂芯的使用,减少了下芯合箱装配偏差,避免浇注后形成披缝,提高了阀门铸件各部位相对尺寸精度和表面质量,造型较方便简单。 (3)浇注系统设计。 阀门铸件浇注系统采用底注式浇注系统。底注式浇注系统内浇道基本上在淹没状态下工作,充型平稳,可避免金属液发生激溅、氧化及由此而形成的铸件缺陷;无论浇口比是多大,横浇道基本工作在充满状态下,有利阻渣,型腔内的气体容易顺序排出。 CF8C材质合金元素Cr含量较高。Cr熔点高,使钢液液相线温度上升,降低钢液流动性,浇注过程中易产生冷隔、表面皱皮等现象。Cr在钢液中易氧化形成氧化铬膜,充型紊乱时易产生氧化夹杂。浇注系统设置时应充分考虑以上因素,保证充型快速、平稳。 (a)浇注时间。根据铸件的液重可以按表4查出铸件的大致浇注时间,结合生产实际确定铸件的浇注时间。该阀门液重为9350kg,根据表4查出浇注时间在40~150s。为保证快速平稳充型,结合生产实际,浇注时间选择t=105s。 表4 铸钢件质量与浇注时间关系 质量/kg 浇注时间/s 500~1000 12~20 1000~3000 20~50 3000~5000 50~80 5000~10000 40~150 ≥10000 80~150 浇注时间的设置是否合适,可用浇注时钢液在型腔内

文档评论(0)

kfcel5889 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档