- 1、本文档共11页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
PAGE 1
Harbin Institute of Technology
实验报告
课程名称: 时间序列分析
设计题目: 非平稳时间序列建模
院 系: 电信学院
班 级:
设 计 者:
学 号:
指导教师: 冀振元
设计时间: 2010-05-07
一、绪论
稳序列的直观含义就是序列中不存在任何趋势性和周期性,其统计意义就是一阶矩为常数,二阶矩存在且为时间间隔t的函数。但是在实际问题中,我们常遇到的序列,特别是反映社会、经济现象的序列,大多数并不平稳,而是呈现出明显的趋势性或周期性。这时,我们就不能认为它是均值不变的平稳过程,需要用如下更一般的模型——来描述。其中,表示中随时间变化的均值,它往往可以用多项式、指数函数、正弦函数等描述,而是中剔除趋势性或周期性后余下的部分,往往可以认为是零均值的平稳过程,因而可以用ARMA模型来描述。具体的处理方法可分为两大类:一类是通过某些数学方法剔除掉中所包含的趋势性或周期性(即),余下的可按平稳过程进行分析与建模,最后再经反运算由的结果得出的有关结果。另一类方法是具体求出的拟合形式,求出,然后对残差序列{}进行分析,该残差序列可以认为是平稳的。利用前述方法可以求出,最后综合可得。如果我们对的形式并不敢兴趣,则可以采取第一类方法,否则可以用第二类方法。需要再强调的一点是,时间序列非平稳性的表现是多种多样的,这里我们所能分析处理的仅是一些较为特殊的非平稳性。
二、建模原理
2.1平稳化方法
2.1.1差分
一般而言,若某序列具有线性的趋势,则可以通过对其进行一次差分而将线性趋势剔除掉,然后对差分后的序列拟合ARMA模型进行分析与预测,最后再通过差分的反运算得到的有关结果。做一次差分可记为,则
(1)
如果对一阶差分结果再进行差分,则称为高阶差分,差分的次数称为差分的阶,d阶差分记为。
2.2.2 季节差分
反映经济现象的序列,不少都具有周期性,例如,刚收获的小麦,由于供应充足,价格一般是较低的,然后随着供应量的减少,价格会逐渐上涨,直至下一个收获季节又重新开始这一周期。设为一含有周期S的周期性波动序列,则…为各相应周期点的数值,它们则表现出非常相近或呈现某一趋势的特征,如果把每一观察值同下一周期相应时刻的观察值相减,这就叫季节差分,它可以消除周期性的影响。季节差分常用表示,其中S为周期。
2.2.3对数变换与差分运算的结合运用
如果序列含有指数趋势,则可以通过取对数将指数趋势转化为线性趋势,然后再进行差分以消除线性趋势。
2.2齐次非平稳
在除去局部水平或趋势以外,某些非平稳时间序列显示出一定的同质性,即序列的某一部分与任何其他部分极其相似。这样的序列往往经过若干次差分后可转化为平稳序列,这种非平稳性称为齐次非平稳性,差分的次数称为齐次性的阶。实际中较为常见的是一阶和二阶的齐次非平稳性,表现为两种情形:第一种是序列呈现出水平非平稳性,除了局部水平不同,序列是同质的,也就是说序列的一部分和其他部分非常相似,只是在垂直方向上位置不同。这样的序列经过一次差分后可转化为平稳序列。第二种是序列呈现出水平和斜率的非平稳性,序列既没有固定的水平,也没有固定斜率,除此之外,序列是同质的,这样的序列经过两次差分后可转化为平稳序列。
2.3 ARIMA模型
对于d阶齐次非平稳序列而言,是一个平稳序列,设其适合ARMRA(p,q)模型,即
(2)
也可写作:
(3)
其中:
(4)
(5)
称此模型为求和自回归滑动平均模型(Integreated Autoregressive Moving Average Model),简记为ARIMA(p,d,q),其中p,d,q分别表示自回归阶数、差分阶数和移动平均阶数。之所以称之为求和自回归滑动平均模型,是因为差分的反运算即位求和运算。
常见的ARIMA模型有以下几种:
1.ARIMA(0,1,1)
文档评论(0)