- 1、本文档共10页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
分类决策树
原理
决策树(Decision Tree)是一种简单但是广泛使用的分类器。通过训练数据构建决策树,对未知的数据进行分类。如何预测, 先看看下面的数据表格:
ID
拥有房产
婚姻情况
年收入:千元
无法偿还债务
1
是
单身
125
否
2
否
已婚
100
否
3
否
单身
70
否
4
是
已婚
120
否
5
否
离婚
95
是
6
否
已婚
60
否
7
是
离婚
220
否
8
否
单身
85
是
9
否
已婚
75
否
10
否
单身
90
是
上表根据历史数据,记录已有的用户是否可以偿还债务,以及相关的信息。通过该数据,构建的决策树如下:
如新来一个用户:无房产,单身,年收入55K,那么根据上面的决策树,可以预测他无法偿还债务(蓝色虚线路径)。从上面的决策树,还可以知道是否拥有房产可以很大的决定用户是否可以偿还债务,对借贷业务具有指导意义。
决策树构建的基本步骤如下:
1. 开始所有记录看作一个节点
2. 遍历每个变量的每一种分割方式,找到最好的分割点
3. 分割成两个节点N1和N2
4. 对N1和N2分别继续执行2-3步,直到每个节点足够“纯”为止
构建决策树的变量可以有两种:
1) 连续型:如前例中的“年收入”。用“=”,“”,“”或“=”作为分割条件(排序后,利用已有的分割情况,可以优化分割算法的时间复杂度)。
2) 分类型:如前例中的“婚姻情况”,使用“=”来分割。
如何评估分割点的好坏?如果一个分割点可以将当前的所有节点分为两类,使得每一类都很“纯”,也就是同一类的记录较多,那么就是一个好分割点。比如上面的例子,“拥有房产”,可以将记录分成了两类,“是”的节点全部都可以偿还债务,非常“纯”;“否”的节点,可以偿还贷款和无法偿还贷款的人都有,不是很“纯”,但是两个节点加起来的纯度之和与原始节点的纯度之差最大,所以按照这种方法分割。构建决策树采用贪心算法,只考虑当前纯度差最大的情况作为分割点。
纯度计算
前面讲到,决策树是根据“纯度”来构建的,如何量化纯度呢?这里介绍三种纯度计算方法。如果记录被分为n类,每一类的比例P(i)=第i类的数目/总数目。还是拿上面的例子,10个数据中可以偿还债务的记录比例为P(1) = 7/10 = 0.7,无法偿还的为P(2) = 3/10 = 0.3,N = 2。
Gini不纯度:
熵(Entropy):
错误率:
上面的三个公式均是值越大,表示越 “不纯”,越小表示越“纯”。三种公式只需要取一种即可,对最终分类准确率的影响并不大,一般使用熵公式。
纯度差,也称为信息增益(Information Gain),公式如下:
其中,I代表不纯度(也就是上面三个公式的任意一种),K代表分割的节点数,一般K = 2。vj表示子节点中的记录数目。上面公式实际上就是当前节点的不纯度减去子节点不纯度的加权平均数,权重由子节点记录数与当前节点记录数的比例决定。
停止条件
决策树的构建过程是一个递归的过程,所以需要确定停止条件,否则过程将不会结束。一种最直观的方式是当每个子节点只有一种类型的记录时停止,但是这样往往会使得树的节点过多,导致过度拟合(Overfitting)。另一种可行的方法是当前节点中的记录数低于一个最小的阀值,那么就停止分割,将max(P(i))对应的分类作为当前叶节点的分类。
过度拟合
采用上面算法生成的决策树在事件中往往会导致过度拟合。也就是该决策树对训练数据可以得到很低的错误率,但是运用到测试数据上却得到非常高的错误率。过度拟合的原因有以下几点:
噪音数据:训练数据中存在噪音数据,决策树的某些节点有噪音数据作为分割标准,导致决策树无法代表真实数据。
缺少代表性数据:训练数据没有包含所有具有代表性的数据,导致某一类数据无法很好的匹配,这一点可以通过观察混淆矩阵(Confusion Matrix)分析得出。
多重比较(Mulitple Comparition):举个列子,股票分析师预测股票涨或跌。假设分析师都是靠随机猜测,也就是他们正确的概率是0.5。每一个人预测10次,那么预测正确的次数在8次或8次以上的概率为,只有5%左右,比较低。但是如果50个分析师,每个人预测10次,选择至少一个人得到8次或以上的人作为代表,那么概率为,概率十分大,随着分析师人数的增加,概率无限接近1。但是,选出来的分析师其实都是非专业的,他对未来的预测不能做任何保证。上面这个例子就是多重比较。这一情况和决策树选取分割点类似,需要在每个变量的每一个值中选取一个作为分割的代表,所以选出一个噪音分割标准的概率
您可能关注的文档
- 内蒙古师范大学二连浩特国际学院会计岗位职责.docx
- 内蒙古机电职业技术学院试点专业建设进展情况统计表专业名称电气自动化技术专业建设负责人.doc
- 内蒙古自治区全球基金艾滋病项目概要.doc
- 内蒙古自治区工商行政管理局国家法人库市场主体准入分系统项目市场主体登记申请子系统用户手册.docx
- 内蒙古蒙电华能热电股份有限公司乌海发电厂厂侧燃料管理信息系统升级改造项目技术规范书.docx
- 内蒙古霍林河露天煤业股份有限公司矿山机电设备检修公司2019年毕业生招聘公告.doc
- 内部交流仅供参考农投信息参考.pdf
- 内部审核内部审核审核-为获得审核证据并对其进行客观的评价,以确定满足审核准则的程度进行的.ppt
- 冒险工厂2012年度销售方案赖美君资深副总裁全球营销.pptx
- 写得明说得透找得准审得清描述和阐释事物论证和探究问题调动和运用知识获取和解读信息基本能力.pptx
文档评论(0)