- 1、本文档共6页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
GIST特征提取的异构并发流计算实现-计算机工程与应用.PDF
Computer Engineering and Applications 计算机工程与应用 2015 ,51(6 ) 139
GIST 特征提取的异构并发流计算实现
仲济源,梅魁志,温哲西
ZHONG Jiyuan, MEI Kuizhi, WEN Zhexi
西安交通大学 电子与信息工程学院,西安 710049
School of Electronic and Information Engineering, Xi ’an Jiaotong University, Xi ’an 710049, China
ZHONG Jiyuan, MEI Kuizhi, WEN Zhexi. Parallel stream computing implementation of GIST algorithm on hetero-
geneous platform. Computer Engineering and Applications, 2015, 51 (6 ):139-144.
Abstract :To extract the global feature of GIST, a heterogeneous CPU+GPU collaborative computing and optimization is
firstly implemented: CPU is used to complete the tasks of small amount of calculations and irregular data operations, such
as image quantization and linear extension, while using GPU to complete the tasks with compute-intensive and highly par-
allel data operations, such as filtering, Gabor feature extracting and dimension reducing. For processing image sequences,
the thread pool technology is introduced on the CPU side. Through the use of each thread binding a CUDA stream for one
image, the parallel stream computing for multiple images between CPU and GPU and the streaming data transmission
delay hidden are achieved. Moreover thread pool technology also offers the methods of thread pre-creating, pre-allocating
of resources and running thread number changing on resource, which can improve the computing efficiency of GPU
scheduled by the CPU. Under the same computing accuracy, experiments show that GIST implementation on heteroge-
neous computing platforms for images reaches 8.35~9.31 times speedup of the running on traditional CPU platform, and
has an upgrading rate of 10.0%~37.2% for image sequences data while using the thread pool.
Key words :GIST; Compute Unified Device Architecture(CUDA ); thread pool; heterogeneous computing
摘 要:针对图像GIST 全局特征提取算法的计算任务,实现了CPU+GPU 异构协同计算与优化:使用CPU 完成图像
量化、线性延拓等小计算量、不规则的
您可能关注的文档
- 十二指肠灌注十八碳脂肪酸对泌乳奶牛血液脂肪酸组成、生化.PDF
- 半间歇操作模式下催化精馏制乙二醇单丁醚的数学模拟.PDF
- Agent任务可视编程和单元组合重构-中国科技论文在线.PDF
- AgilentTechnologies系统直流电源.PDF
- 华裔青少年压力与心理健康.PDF
- 卒中相关性肺炎与缺血性脑卒中严重程度及预后的关系研究.PDF
- AI计算框架的选择.PDF
- 南京住房公积金2017年半年报告.doc
- 南京信息工程大学教学名师奖评选与奖励办法(试行).PDF
- AN-9765LED背光驱动升压开关-ONSemiconductor.PDF
- 25上半年2期套题班-行政职业能力测验(八).docx
- 公考讲义-2025年1月时政汇总.pdf
- 2025年省考逻辑填空1000 高频实词积累+刷题早读课 讲义.pdf
- 25上半年2期套题班-行政职业能力测验(九).docx
- 2025四川事业编FB综合岗考试-综合能力测试讲义-主观题基础,案例分析题,公文写作及文章写作题.pdf
- 25上半年2期套题班-行政职业能力测验(五).docx
- 2025申论多省联考刷题课真题资料-2025国考执法课程.doc
- 2025申论多省联考刷题课真题资料-2024江西执法课程.doc
- 25上半年2期套题班-行政职业能力测验(十).docx
- 2025申论多省联考刷题课真题资料-2024福建县乡课程.doc
文档评论(0)