网站大量收购独家精品文档,联系QQ:2885784924

GIST特征提取的异构并发流计算实现-计算机工程与应用.PDF

GIST特征提取的异构并发流计算实现-计算机工程与应用.PDF

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
GIST特征提取的异构并发流计算实现-计算机工程与应用.PDF

Computer Engineering and Applications 计算机工程与应用 2015 ,51(6 ) 139 GIST 特征提取的异构并发流计算实现 仲济源,梅魁志,温哲西 ZHONG Jiyuan, MEI Kuizhi, WEN Zhexi 西安交通大学 电子与信息工程学院,西安 710049 School of Electronic and Information Engineering, Xi ’an Jiaotong University, Xi ’an 710049, China ZHONG Jiyuan, MEI Kuizhi, WEN Zhexi. Parallel stream computing implementation of GIST algorithm on hetero- geneous platform. Computer Engineering and Applications, 2015, 51 (6 ):139-144. Abstract :To extract the global feature of GIST, a heterogeneous CPU+GPU collaborative computing and optimization is firstly implemented: CPU is used to complete the tasks of small amount of calculations and irregular data operations, such as image quantization and linear extension, while using GPU to complete the tasks with compute-intensive and highly par- allel data operations, such as filtering, Gabor feature extracting and dimension reducing. For processing image sequences, the thread pool technology is introduced on the CPU side. Through the use of each thread binding a CUDA stream for one image, the parallel stream computing for multiple images between CPU and GPU and the streaming data transmission delay hidden are achieved. Moreover thread pool technology also offers the methods of thread pre-creating, pre-allocating of resources and running thread number changing on resource, which can improve the computing efficiency of GPU scheduled by the CPU. Under the same computing accuracy, experiments show that GIST implementation on heteroge- neous computing platforms for images reaches 8.35~9.31 times speedup of the running on traditional CPU platform, and has an upgrading rate of 10.0%~37.2% for image sequences data while using the thread pool. Key words :GIST; Compute Unified Device Architecture(CUDA ); thread pool; heterogeneous computing 摘 要:针对图像GIST 全局特征提取算法的计算任务,实现了CPU+GPU 异构协同计算与优化:使用CPU 完成图像 量化、线性延拓等小计算量、不规则的

文档评论(0)

zcbsj + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档