SPSS相关分析实验报告资料.docVIP

  1. 1、本文档共9页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本科教学实验报告 (实验)课程名称:数据分析技术系列实验 PAGE 9 实 验 报 告 学生姓名: 一、实验室名称: 二、实验项目名称:相关分析 三、实验原理 相关关系是不完全确定的随机关系。在相关关系的情况下,当一个或几个相互联系的变量取一定值得时候,与之相应的另一变量的值虽然不确定,但它仍然按照某种规律在一定的范围内变化。 按照数据度量的尺度不同,相关分析的方法也不同,连续变量之间的相关性常用Pearson简单相关系数测定;定序变量的相关系数常用Spearman秩相关系数和Kendall秩相关系数测定;定类变量的相关分析要使用列连表分析法。 四、实验目的 理解相关分析的基本原理,掌握在SPSS软件中相关分析的主要参数设置及其含义,掌握SPSS软件分析结果的含义及其分析。 实验内容及步骤 实验内容:以雇员表为例,共有474条数据,运用相关分析方法对变量间的相关关系进行分析。 1)分析性别与工资之间是否存在相关关系。 2)分析教育程度与工资之间是否存在相关关系。 实验要求:掌握相关分析方法的计算思路及其在SPSS环境下的操作方法,掌握输出结果的解释。 1. 分析性别与工资之间是否存在相关关系。 分析:性别属于定类变量,是离散值,因使用卡方检验。 Step1.操作为Analyze \ Descriptive Statistics \ Crosstabs Step2.将性别(Gender)和收入(Current Salary)分别移入Rows列表框和Columns列表框。 Step3.单击Statistics按钮,在弹出的子对话框中选中默认的Chi-square,进行卡方检验。退回到主对话框,单击ok。 2. 分析教育程度与工资之间是否存在相关关系。 分析:教育程度为定序变量,工资为连续变量,可使用Spearman和Kendall秩相关系数检验。 Step1. 用散点图初步判断二变量的相关性,操作为Graphs / Legacy Dialogs / Scatter,选择Simple Scatter,教育程度为自变量,工资为因变量,做散点图。 散点图结果如图示,二者存在线性相关关系。只有线性相关的关系确定后才能继续进行下一步分析。因此, 在进行相关分析之前的预分析过程也是十分重要的。 Step2.两变量相关分析,操作为Analyze / Correlate / Bivariate,选择Kendall和Spearman相关系数。 六、实验器材(设备、元器件): 计算机、打印机、硒鼓、碳粉、纸张 七、实验数据及结果分析 1.分析性别与工资之间是否存在相关关系。 卡方检验结果为 卡方检验 值 df 渐进 Sig. (双侧) Pearson 卡方 290.785a 220 .001 似然比 390.179 220 .000 有效案例中的 N 474 a. 440 单元格(99.5%) 的期望计数少于 5。最小期望计数为 .46。 显著性水平为0.001,即至少有99.99%的把握认为性别和工资之间存在显著的相关系。 分析教育程度与工资之间是否存在相关关系。 相关系数 Educational Level (years) Current Salary Kendall 的 tau_b Educational Level (years) 相关系数 1.000 .554** Sig.(双侧) . .000 N 474 474 Current Salary 相关系数 .554** 1.000 Sig.(双侧) .000 . N 474 474 Spearman 的 rho Educational Level (years) 相关系数 1.000 .688** Sig.(双侧) . .000 N 474 474 Current Salary 相关系数 .688** 1.000 Sig.(双侧) .000 . N 474 474 **. 在置信度(双测)为 0.01 时,相关性是显著的。 Kendall和Spearman相关系数分别为0.554和0.688,所以可以认为教育程度和工资正相关。 八、实验结论 SPSS在数据分析方面提供了强大的能力,可以快速地进行相关分析,重点在于分清连续变量、定序变量、定类变量,以及与其联系的相关系数。 总结及心得体会 Spss有着强大的相关分析功能,在使用spss的同时一定要与统计学的理论联系在一起,理清每种统计方法的内在含义。 十、对本实验过程及方法、手段的改进建议 分清连续变量、定序变量、定类变量是进行相关分析的基础,要牢记与每种变量相匹配的相关系数。

文档评论(0)

精品课件 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档