- 1、本文档共114页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
* 请注意窗口顶部显示为“SPSS for Windows Data Editor”,表明现在所看到的是SPSS的数据管理窗口。这是一个典型的Windows软件界面,有菜单栏、工具栏。特别的,工具栏下方的是数据栏,数据栏下方则是数据管理窗口的主界面。该界面和EXCEL极为相似,由若干行和列组成,每行对应了一条记录,每列则对应了一个变量。由于现在我们没有输入任何数据,所以行、列的标号都是灰色的。请注意第一行第一列的单元格边框为深色,表明该数据单元格为当前单元格。 2003年11月30日 西南农业大学网络及现代教育技术中心 4.1 Bivariate过程 此过程用于进行两个/多个变量间的参数/非参数相关分析,如果是多个变量,则给出两两相关的分析结果。这是Correlate子菜单中最为常用的一个过程,实际上我们对他的使用可能占到相关分析的95%以上。 4.2 Partial过程 如果需要进行相关分析的两个变量其取值均受到其他变量的影响,就可以利用偏相关分析对其他变量进行控制,输出控制其他变量影响后的相关系数,这种分析思想和协方差分析非常类似。Partial过程就是专门进行偏相关分析的。 4.3 Distances过程 调用此过程可对同一变量内部各观察单位间的数值或各个不同变量间进行距离相关分析,前者可用于检测观测值的接近程度,后者则常用于考察预测值对实际值的拟合优度。该过程在实际应用中用的非常少。 2003年11月30日 西南农业大学网络及现代教育技术中心 5、多元线性回归与曲线拟合―― Regression菜单 回归分析是处理两个及两个以上变量间线性依存关系的统计方法。回归分析就是用于说明这种依存变化的数学关系。下面三个过程是Regression菜单的子菜单,是SPSS提供的用于回归分析的工具: 5.1 Linear过程——调用此过程可完成二元或多元的线性回归分析。在多元线性回归分析中,用户还可根据需要,选用不同筛选自变量的方法(如:逐步法、向前法、向后法,等)。 5.2 Curve Estimation过程——Curve Estimation过程可以用与拟合各种各样的曲线,原则上只要两个变量间存在某种可以被它所描述的数量关系,就可以用该过程来分析。但这里我们要指出,由于曲线拟合非常的复杂,而该模块的功能十分有限,因此最好采用将曲线相关关系通过变量变换的方式转化为直线回归的形式来分析,或者采用其他专用的模块分析。 2003年11月30日 西南农业大学网络及现代教育技术中心 5.3 Binary Logistic过程——所谓Logistic模型,或者说Logistic回归模型,就是人们想为两分类的应变量作一个回归方程出来,可概率的取值在0~1之间,回归方程的应变量取值可是在实数集中,直接做会出现0~1范围之外的不可能结果,因此就有人耍小聪明,将率做了一个Logit变换,这样取值区间就变成了整个实数集,作出来的结果就不会有问题了,从而该方法就被叫做了Logistic回归。 随着模型的发展,Logistic家族也变得人丁兴旺起来,除了最早的两分类Logistic外,还有配对Logistic模型,多分类Logistic模型、随机效应的Logistic模型等。由于SPSS的能力所限,对话框只能完成其中的两分类和多分类模型,下面我们就介绍一下最重要和最基本的两分类模型。 2003年11月30日 西南农业大学网络及现代教育技术中心 6、对数线性模型——Loglinear菜单 对数线性模型是一种纯粹应用于分类变量分析的多元统计方法。 它是一种比较新型的分析方法,在分析高维列联表时优势尤为突出。由以下三个过程组成: 6.1 General过程——用于进行一般对数线性模型分析,主要用于证实性研究。此时研究人员只对某些特定效应感兴趣,即已经有关于模型的假设,此时就可以采用一般模型来检验这一假设是否正确、充分,它可以对总模型和各个参数给出详细的检验结果。对变量不分因变量自变量,在分析中一视同仁,最后在结果解释时才由研究人员来做出判断。 6.2 Logit过程——当研究人员已经有了一些线索,知道因变量自变量时,如果应变量为两分类,就可以用这个过程来分析。 6.3 Model Selection过程——分层对数线性模型。一般线性对数模型可以对每个系数及总模型给出非常丰富和详细的信息,但是它要求研究人员心中已经有了一定的思路或线索,或只对某些特定效应项感兴趣,即已经有关于简约模型的假设。如果在探索性分析中研究人员中只是设想若干分类变量之间可能有关系,但是并无明确假设,也没有具体分出哪个是应变量、哪个是自变量,此时比较适宜采用分层对数线性模型分析。 2003年11月30日 西南农业大学网络及现代教育技术中心 7、聚类分析与判别分析——Classify菜单 聚类
您可能关注的文档
- 课件:nea存储基础知识培训.ppt
- 课件:NE详细教程.ppt
- 课件:NGO蓝天救援队.ppt
- 课件:NM程序制作.ppt
- 课件:NSEACS危险分层及处理策略.ppt
- 课件:N型三极管.ppt
- 课件:N端脑利钠肽.ppt
- 课件:N结与二极管原理.ppt
- 课件:n结击穿.ppt
- 课件:N超声诊断规范.ppt
- 2024年江西省高考政治试卷真题(含答案逐题解析).pdf
- 2025年四川省新高考八省适应性联考模拟演练(二)物理试卷(含答案详解).pdf
- 2025年四川省新高考八省适应性联考模拟演练(二)地理试卷(含答案详解).pdf
- 2024年内蒙通辽市中考化学试卷(含答案逐题解析).docx
- 2024年四川省攀枝花市中考化学试卷真题(含答案详解).docx
- (一模)长春市2025届高三质量监测(一)化学试卷(含答案).pdf
- 2024年安徽省高考政治试卷(含答案逐题解析).pdf
- (一模)长春市2025届高三质量监测(一)生物试卷(含答案).pdf
- 2024年湖南省高考政治试卷真题(含答案逐题解析).docx
- 2024年安徽省高考政治试卷(含答案逐题解析).docx
文档评论(0)