贝叶斯分类演示教学.pptx

  1. 1、本文档共70页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
数据挖掘分类之贝叶斯分类目录1贝叶斯分类 2贝叶斯网络 基于weka的贝叶斯仿真 3总结 致谢 451.1分类的基本概念背景 近几十年来,Internet互联网的普及使得人们获得和存储数据的能力得到逐步的提高,数据规模不断壮大。面对“数据丰富而知识匮乏”的挑战,数据挖掘技术应运而生。数据挖掘是一门多学科的交叉领域,涉及统计学,机器学习、神经网络、模式识别、知识库系统、信息检索、高性能计算和可视化等学科。而数据挖掘中的分类技术是一项非常重要的技术。Q1 什么是分类 超市中的物品分类 生活中的垃圾分类Q1 什么是分类由此可见,分类是跟我们的生活息息相关的东西,分类让生活更加有条理,更加精彩. 生活信息的分类Q1 什么是分类分类在数据挖掘中的学术定义 分类就是把一些新的数据项映射到给定类别的中的某一个类别,比如说当我们发表一篇文章的时候,就可以自动的把这篇文章划分到某一个文章类别。 分类也称为有监督学习(supervised learning),与之相对于的是无监督学习(unsupervised learning),比如聚类。 分类与聚类的最大区别在于,分类数据中的一部分的类别是已知的,而聚类数据的类别未知。 ? Q2 分类问题名称胎生会飞水中生活有腿类别Human是否否是哺乳动物python否否否否非哺乳动物salmon否否是否非哺乳动物whale是否是否哺乳动物frog否否有时是非哺乳动物komodo否否否是非哺乳动物bat是是否是哺乳动物pigeon否是否是非哺乳动物cat是否否是哺乳动物leopard_shark是否是否非哺乳动物turtle否否有时是非哺乳动物penguin否否有时是非哺乳动物porcupine是否否是哺乳动物eel否否是否非哺乳动物salamander否否有时是非哺乳动物gila_monster否否否是非哺乳动物platypus否否否是哺乳动物owl否是否是非哺乳动物dolphin是否是否哺乳动物eagle否是否是非哺乳动物胎生会飞水中生活有腿类别是否是否?Q2 分类问题税号去年退税婚姻状况可征税收入逃税1是单身125k否2否婚姻中100k否3否单身70k否4是婚姻中120k否5否离婚95k是6否婚姻中60k否7是离婚220k否8否单身85k是9否婚姻中75k否10否单身90k是Q2 分类的流程动物种类体型翅膀数量脚的只数是否产蛋是否有毛类别狗中04否是哺乳动物猪大04否是哺乳动物牛大04否是哺乳动物麻雀小22是是鸟类天鹅中22是是鸟类大雁中22是是鸟类动物A大02是无?动物B中22否是? 根据现有的知识,我们得到了一些关于哺乳动物和鸟类的信息,我们能否对新发现的物种,比如动物A,动物B进行分类?Q2 分类的流程步骤一:将样本转化为等维的数据特征(特征提取)。所有样本必须具有相同数量的特征兼顾特征的全面性和独立性动物种类体型翅膀数量脚的只数是否产蛋是否有毛类别狗中04否是哺乳动物猪大04否是哺乳动物牛大04否是哺乳动物麻雀小22是是鸟类天鹅中22是是鸟类大雁中22是是鸟类Q2 分类的流程步骤二:选择与类别相关的特征(特征选择)。比如,绿色代表与类别非常相关,黑色代表部分相关,浅蓝色代表完全无关动物种类体型翅膀数量脚的只数是否产蛋是否有毛类别狗中04否是哺乳动物猪大04否是哺乳动物牛大04否是哺乳动物麻雀小22是是鸟类天鹅中22是是鸟类大雁中22是是鸟类Q2 分类的流程步骤三:建立分类模型或分类器(分类)。分类器通常可以看作一个函数,它把特征映射到类的空间上Q3 分类的方法 对数据挖掘中心的可信技术分类算法的内容及其研究现状进行综述。认为分类算法大体可以分为传统分类算法和基于软件计算的分类法两类,主要包括相似函数,关联规则分类算法,K近邻分类算法,决策树分类算法,贝叶斯分类算法和基于模糊逻辑,遗传算法,粗糙集和神经网络的分类算法。 分类的算法有很多种,他们都有各自的优缺点和应用范围,本次我就贝叶斯分类算法展开我的演讲。1.2 贝叶斯分类概述背景 贝叶斯分类基于贝叶斯定理,贝叶斯定理是由18世纪概率论和决策论的早起研究者Thomas Bayes发明的,故用其名字命名为贝叶斯定理。 分类算法的比较研究发现,一种称为朴素贝叶斯分类法的简单贝叶斯分类法可以与决策树和经过挑选的神经网络分类器相媲美。用于大型数据库,贝叶斯分类法也已表现出高准确率和高速度。 目前研究较多的贝叶斯分类器主要有四种,分别是:Naive Bayes、TAN、BAN和GBN。Thomas Bayes贝叶斯定理 贝叶斯定理(Bayes theorem)是/wiki/%E6%A6%82%E7%8E%87%E8%AE%BA概率论中的一个结果,它跟/wiki/%E9%9A%8F%E6%9C%BA%E5%8F%98%E9%

文档评论(0)

sunfuliang7808 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档