- 1、本文档共10页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
优就业程序开发分享-我对 AlphaGo 的分析
3月9日至3月15日,谷歌AlphaGo将在韩国首尔与李世石进行5场围棋挑战赛。在今天的第二局较量中,AlphaGo 再下一城,以总比分 2:0 领先李世石。
今天小U向大家推荐田渊栋在 3 月 1 日的一篇分析 AlphaGo 的文章。田渊栋是卡耐基梅隆大学机器人系博士。曾就职于 Google X 部门,目前是 Facebook 的智能围棋 darkforest 的负责人和第一作者。
最近我仔细看了下AlphaGo在《自然》杂志上发表的文章,写一些分析给大家分享。
?
?
AlphaGo这个系统主要由几个部分组成:
走棋网络(Policy Network),给定当前局面,预测/采样下一步的走棋。
快速走子(Fast rollout),目标和1一样,但在适当牺牲走棋质量的条件下,速度要比1快1000倍。
估值网络(Value Network),给定当前局面,估计是白胜还是黑胜。
蒙特卡罗树有哪些信誉好的足球投注网站(Monte Carlo Tree Search,MCTS),把以上这三个部分连起来,形成一个完整的系统。
我们的DarkForest和AlphaGo同样是用4搭建的系统。DarkForest较AlphaGo而言,在训练时加强了1,而少了2和3,然后以开源软件Pachi的缺省策略 (default policy)部分替代了2的功能。以下介绍下各部分。
1.走棋网络:
走棋网络把当前局面作为输入,预测/采样下一步的走棋。它的预测不只给出最强的一手,而是对棋盘上所有可能的下一着给一个分数。棋盘上有361个点,它就给出361个数,好招的分数比坏招要高。DarkForest在这部分有创新,通过在训练时预测三步而非一步,提高了策略输出的质量,和他们在使用增强学习进行自我对局后得到的走棋网络(RL network)的效果相当。当然,他们并没有在最后的系统中使用增强学习后的网络,而是用了直接通过训练学习到的网络(SL network),理由是RL network输出的走棋缺乏变化,对有哪些信誉好的足球投注网站不利。
?
?
有意思的是在AlphaGo为了速度上的考虑,只用了宽度为192的网络,而并没有使用最好的宽度为384的网络(见图2(a)),所以要是GPU更快一点(或者更多一点),AlphaGo肯定是会变得更强的。
所谓的0.1秒走一步,就是纯粹用这样的网络,下出有最高置信度的合法着法。这种做法一点也没有做有哪些信誉好的足球投注网站,但是大局观非常强,不会陷入局部战斗中,说它建模了“棋感”一点也没有错。我们把DarkForest的走棋网络直接放上KGS就有3d的水平,让所有人都惊叹了下。可以说,这一波围棋AI的突破,主要得益于走棋网络的突破。这个在以前是不可想像的,以前用的是基于规则,或者基于局部形状再加上简单线性分类器训练的走子生成法,需要慢慢调参数年,才有进步。
当然,只用走棋网络问题也很多,就我们在DarkForest上看到的来说,会不顾大小无谓争劫,会无谓脱先,不顾局部死活,对杀出错,等等。有点像高手不经认真思考的随手棋。因为走棋网络没有价值判断功能,只是凭“直觉”在下棋,只有在加了有哪些信誉好的足球投注网站之后,电脑才有价值判断的能力。
2. 快速走子
那有了走棋网络,为什么还要做快速走子呢?有两个原因,首先走棋网络的运行速度是比较慢的,AlphaGo说是3毫秒,我们这里也差不多,而快速走子能做到几微秒级别,差了1000倍。所以在走棋网络没有返回的时候让CPU不闲着先有哪些信誉好的足球投注网站起来是很重要的,等到网络返回更好的着法后,再更新对应的着法信息。
其次,快速走子可以用来评估盘面。由于天文数字般的可能局面数,围棋的有哪些信誉好的足球投注网站是毫无希望走到底的,有哪些信誉好的足球投注网站到一定程度就要对现有局面做个估分。在没有估值网络的时候,不像国象可以通过算棋子的分数来对盘面做比较精确的估值,围棋盘面的估计得要通过模拟走子来进行,从当前盘面一路走到底,不考虑岔路地算出胜负,然后把胜负值作为当前盘面价值的一个估计。这里有个需要权衡的地方:在同等时间下,模拟走子的质量高,单次估值精度高但走子速度慢;模拟走子速度快乃至使用随机走子,虽然单次估值精度低,但可以多模拟几次算平均值,效果未必不好。所以说,如果有一个质量高又速度快的走子策略,那对于棋力的提高是非常有帮助的。
为了达到这个目标,神经网络的模型就显得太慢,还是要用传统的局部特征匹配(local pattern matching)加线性回归(logistic regression)的方法,这办法虽然不新但非常好使,几乎所有的广告推荐,竞价排名,新闻排序,都是用的它。与更为传统的基于规则的方案相比,它在吸纳了众多高手对局之后就具备了用梯度下降法自动调参的能力,所以性能提高起来会更快更省心。AlphaGo用这个办法达到了2微秒的走子速度和24.2%的走子准确率。24.
文档评论(0)