回归分析的基本思想及其应用.ppt

  1. 1、本文档共37页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
高二数学 选修1-2 1.1回归分析的基本思想及其初步应用 相关系数 1.计算公式 2.相关系数的性质 (1)|r|≤1. (2)|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小. 问题:达到怎样程度,x、y线性相关呢?它们的相关程度怎样呢? 表3-2列出了女大学生身高和体重的原始数据以及相应的残差数据。 在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关, 是否可以用回归模型来拟合数据。 残差分析与残差图的定义: 然后,我们可以通过残差 来判断模型拟合的效果,判断原始 数据中是否存在可疑数据,这方面的分析工作称为残差分析。 编号 1 2 3 4 5 6 7 8 身高/cm 165 165 157 170 175 165 155 170 体重/kg 48 57 50 54 64 61 43 59 残差 -6.373 2.627 2.419 -4.618 1.137 6.627 -2.883 0.382 我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本 编号,或身高数据,或体重估计值等,这样作出的图形称为残差图。 * 残差图的制作及作用。 坐标纵轴为残差变量,横轴可以有不同的选择; 若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域; 对于远离横轴的点,要特别注意。 身高与体重残差图 异常点 错误数据 模型问题 几点说明: 第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。 另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。 例2、在一段时间内,某中商品的价格x元和需求量Y件之间的一组数据为: 求出Y对的回归直线方程,并说明拟合效果的好坏。 价格x 14 16 18 20 22 需求量Y 12 10 7 5 3 解: 练习、在一段时间内,某中商品的价格x元和需求量Y件之间的一组数据为: 求出Y对的回归直线方程,并说明拟合效果的好坏。 价格x 14 16 18 20 22 需求量Y 12 10 7 5 3 列出残差表为 0.994 因而,拟合效果较好。 0 0.3 -0.4 -0.1 0.2 4.6 2.6 -0.4 -2.4 -4.4 例2:一只红铃虫的产卵数y与温度x有关,现收集了7组观测数据,试建立y与x之间的回归方程 解:1)作散点图; 从散点图中可以看出产卵数和温度之间的关系并不能用线性回归模型来很好地近似。这些散点更像是集中在一条指数曲线或二次曲线的附近。 解: 令 则z=bx+a,(a=lnc1,b=c2),列出变换后数据表并画 出x与z 的散点图 x和z之间的关系可以用线性回归模型来拟合 5.784 4.745 4.19 3.178 3.045 2.398 1.946 z 35 32 29 27 25 23 21 x 2) 用 y=c3x2+c4 模型,令 ,则y=c3t+c4 ,列出变换后数据表并画出t与y 的散点图 散点并不集中在一条直线的附近,因此用线性回归模型拟合他们的效果不是最好的。 325 115 66 24 21 11 7 y 1225 1024 841 729 625 529 441 t 77.965 -58.268 -40.107 -41.003 -5.835 19.397 47.7 e(2) 32.928 -14.153 8.889 -9.149 1.76 -0.167 0.52 e(1) 325 115 66 24 21 11 7 y 35 32 29 27 25 23 21 x 7 6 5 4 3 2 1 编号 表 差 残 非线性回归方程 二次回归方程 残差公式 在此处可以引导学生体会应用统计方法解决实际问题需要注意的问题:对于同样的数据,有不同的统计方法进行分析,我们要用最有效的方法分析数据。 现在有三个不同的回归模型可供选择来拟合红铃虫的产卵数与温度数据,他们分别是: 可以利用直观(散点图和残差图)、相关指数来确定哪一个模型的拟合效果更好。 用身高预报体重时,需要注意下列问题: 1、回归方程只适用于我们所研究的样本的总体; 2、我们所建立的回归方程一般都有时间性; 3、样本采集的范围会影响回归方程的适用范围; 4、不能期望回归方程得到的预报值就是预报变

文档评论(0)

cindy810622 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档