美国华尔街德温特资本市场公司首席执行官保罗.docx

美国华尔街德温特资本市场公司首席执行官保罗.docx

  1. 1、本文档共16页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
数据挖掘方法案例介绍 分类 ?????????分类是用于识别什么样的事务属于哪一类的方法,可用于分类的算法有决策树、bayes分类、神经网络、支持向量机等等。 1 决策树 例1 ?????????一个自行车厂商想要通过广告宣传来吸引顾客。他们从各地的超市获得超市会员的信息,计划将广告册和礼品投递给这些会员。 ?????????但是投递广告册是需要成本的,不可能投递给所有的超市会员。而这些会员中有的人会响应广告宣传,有的人就算得到广告册不会购买。 所以最好是将广告投递给那些对广告册感兴趣从而购买自行车的会员。分类模型的作用就是识别出什么样的会员可能购买自行车。 ?????????自行车厂商首先从所有会员中抽取了1000个会员,向这些会员投递广告册,然后记录这些收到广告册的会员是否购买了自行车。 数据如下: 事例列 会员编号 12496 14177 24381 25597 ………… 输入列 婚姻状况 Married Married Single Single 性别 Female Male Male Male 收入 40000 80000 70000 30000 孩子数 1 5 0 0 教育背景 Bachelors Partial College Bachelors Bachelors 职业 Skilled Manual Professional Professional Clerical 是否有房 Yes No Yes No 汽车数 0 2 1 0 上班距离 0-1 Miles 2-5 Miles 5-10 Miles 0-1 Miles 区域 Europe Europe Pacific Europe 年龄 42 60 41 36 预测列 是否购买自行车 No No Yes Yes ? 在分类模型中,每个会员作为一个事例,居民的婚姻状况、性别、年龄等特征作为输入列,所需预测的分类是客户是否购买了自行车。 使用1000个会员事例训练模型后得到的决策树分类如下: ? ※图中矩形表示一个拆分节点,矩形中文字是拆分条件。 ※矩形颜色深浅代表此节点包含事例的数量,颜色越深包含的事例越多,如全部节点包含所有的1000个事例,颜色最深。经过第一次基于年龄的拆分后,年龄大于67岁的包含36个事例,年龄小于32岁的133个事例,年龄在39和67岁之间的602个事例,年龄32和39岁之间的229个事例。所以第一次拆分后,年龄在39和67岁的节点颜色最深,年龄大于67岁的节点颜色最浅。 ※节点中的条包含两种颜色,红色和蓝色,分别表示此节点中的事例购买和不购买自行车的比例。如节点“年龄=67”节点中,包含36个事例,其中28个没有购买自行车,8个购买了自行车,所以蓝色的条比红色的要长。表示年龄大于67的会员有74.62%的概率不购买自行车,有23.01%的概率购买自行车。 ?????????在图中,可以找出几个有用的节点: 1. 年龄小于32岁,居住在太平洋地区的会员有72.75%的概率购买自行车; 2. 年龄在32和39岁之间的会员有68.42%的概率购买自行车; 3. 年龄在39和67岁之间,上班距离不大于10公里,只有1辆汽车的会员有66.08%的概率购买自行车; 4. 年龄小于32岁,不住在太平洋地区,上班距离在1公里范围内的会员有51.92%的概率购买自行车; ?????????在得到了分类模型后,将其他的会员在分类模型中查找就可预测会员购买自行车的概率有多大。随后自行车厂商就可以有选择性的投递广告册。 ???????? ??? 聚类 ?????????分类算法的目的是建立事例特征到类别的对应法则。但前提是类别是已存在的,如已知道动物可以分成哺乳类和非哺乳类,银行发行的信用卡有银卡、金卡、白金卡三种。 ?????????有时在分类不存在前,要将现有的事例分成几类。比如有同种材料要分类装入到各个仓库中,这种材料有尺寸、色泽、密度等上百个指标,如果不熟悉材料的特性很难找到一种方法将材料分装。 ?????????又例如,银行刚开始信用卡业务时,没有将客户分类,所有的客户都使用同一种信用卡。在客户积累到一定的数量后,为了方便管理和制定市场策略,需要将客户分类,让不同类别的客户使用不同的信用卡。但问题是,银行该把客户分成几个类别,谁该属于哪一类。 ?????????假定银行仅仅要参照客户的收入和使用信用卡销售金额两个指标对客户分类。通常情况下,仅仅是衡量这些指标的高低来分类,如规定收入小于4000,且消费小于2000的客户分成第一类;收入在4000至8000,消费在2000至4000的客户分成第二类;收入在8000至12000,消费在4000至6000的客户分成第三类;收入在12000以上,消费在6000以上分成第四类。下面的图展示了这种分类。

文档评论(0)

55863368 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档