网站大量收购闲置独家精品文档,联系QQ:2885784924

专题三时间序列的确定性分析.pptxVIP

  1. 1、本文档共53页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
专题三时间序列的确定性分析本章结构时间序列的分解确定性因素分解趋势分析季节效应分析综合分析X-11过程时间序列的分解Wold分解定理Cramer分解定理Wold分解定理(1938)对于任何一个离散平稳过程 它都可以分解为两个不相关的平稳序列之和,其中一个为确定性的,另一个为随机性的,不妨记作 其中: 为确定性序列, 为随机序列, 它们需要满足如下条件 (1) (2) (3)确定性序列与随机序列的定义对任意序列 而言,令 关于q期之前的序列值作线性回归 其中 为回归残差序列, 。 确定性序列,若随机序列,若ARMA模型分解随机序列确定性序列Cramer分解定理(1961)任何一个时间序列 都可以分解为两部分的叠加:其中一部分是由多项式决定的确定性趋势成分,另一部分是平稳的零均值误差成分,即确定性影响随机性影响对两个分解定理的理解Wold分解定理说明任何平稳序列都可以分解为确定性序列和随机序列之和。它是现代时间序列分析理论的灵魂,是构造ARMA模型拟合平稳序列的理论基础。Cramer 分解定理是Wold分解定理的理论推广,它说明任何一个序列的波动都可以视为同时受到了确定性影响和随机性影响的综合作用。平稳序列要求这两方面的影响都是稳定的,而非平稳序列产生的机理就在于它所受到的这两方面的影响至少有一方面是不稳定的。 确定性因素分解现在的因素分解长期趋势波动季节性变化随机波动传统的因素分解长期趋势循环波动季节性变化随机波动趋势分析目的有些时间序列具有非常显著的趋势,我们分析的目的就是要找到序列中的这种趋势,并利用这种趋势对序列的发展作出合理的预测 常用方法趋势拟合法平滑法趋势拟合法趋势拟合法就是把时间作为自变量,相应的序列观察值作为因变量,建立序列值随时间变化的回归模型的方法 分类线性拟合非线性拟合线性拟合使用场合长期趋势呈现出线形特征模型结构非线性拟合使用场合长期趋势呈现出非线形特征 参数估计指导思想能转换成线性模型的都转换成线性模型,用线性最小二乘法进行参数估计实在不能转换成线性的,就用迭代法进行参数估计 常用非线性模型模型变换变换后模型参数估计方法线性最小二乘估计线性最小二乘估计--迭代法--迭代法--迭代法例: 对上海证券交易所每月末上证指数序列进行模型拟合 非线性拟合模型变换参数估计方法线性最小二乘估计拟合模型口径拟合效果图平滑法平滑法是进行趋势分析和预测时常用的一种方法。它是利用修匀技术,削弱短期随机波动对序列的影响,使序列平滑化,从而显示出长期趋势变化的规律 常用平滑方法移动平均法指数平滑法移动平均法基本思想假定在一个比较短的时间间隔里,序列值之间的差异主要是由随机波动造成的。根据这种假定,我们可以用一定时间间隔内的平均值作为某一期的估计值 分类n期中心移动平均n期移动平均n期中心移动平均5期中心移动平均n期移动平均5期移动平均移动平均期数确定的原则事件的发展有无周期性以周期长度作为移动平均的间隔长度 ,以消除周期效应的影响对趋势平滑的要求移动平均的期数越多,拟合趋势越平滑对趋势反映近期变化敏感程度的要求 移动平均的期数越少,拟合趋势越敏感移动平均预测例4.3某一观察值序列最后4期的观察值为:5,5.5,5.8,6.2(1)使用4期移动平均法预测 。(2)求在二期预测值 中 前面的系数等于多少?例4.3解(1)(2) 在二期预测值中 前面的系数等于 指数平滑法指数平滑方法的基本思想在实际生活中,我们会发现对大多数随机事件而言,一般都是近期的结果对现在的影响会大些,远期的结果对现在的影响会小些。为了更好地反映这种影响作用,我们将考虑到时间间隔对事件发展的影响,各期权重随时间间隔的增大而呈指数衰减。这就是指数平滑法的基本思想 分类简单指数平滑Holt两参数指数平滑简单指数平滑基本公式等价公式经验确定初始值的确定平滑系数的确定一般对于变化缓慢的序列, 常取较小的值对于变化迅速的序列, 常取较大的值经验表明 的值介于0.05至0.3之间,修匀效果比较好。简单指数平滑预测一期预测值二期预测值 期预测值例对某一观察值序列 使用指数平滑法。 已知 , ,平滑系数 (1) 求二期预测值 。 (2)求在二期预测值 中 前面的系数等于多少? 解(1)(2) 所以使用简单指数平滑法二期预测值中 前面的系数就等于平滑系数Holt两参数指数平滑使用场合适用于对含有线性趋势的序列进行修匀 构造思想假定序列有一个比较固定的线性趋势 两参数修匀初始值的确定平滑序列的初始值趋势序列的初始值Holt两参数指数平滑预测 期预测值季节效应分析【例】以北京市1995年——2000年月平

文档评论(0)

118books + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档