- 1、本文档共19页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
.
. . .
学习分析的研究现状与未来展望
本文由《开放教育研究》杂志授权发布作者:李香勇、左明章、王志锋摘要 学习分析和知识国际会议在促进学习分析的创新推广方面起到了举足轻重的作用。本文综合分析了2016年学习分析和知识国际会议的主题及主旨演讲,从模型与方法、技术与工具、实践与应用、伦理与道德四方面对会议收录论文进行了梳理和阐述,进而从深化基本理论研究、统一技术标准及规范、拓展实践与应用领域、加强安全与伦理道德探讨等方面对该研究领域的未来趋势进行展望,探寻未来发展路径,即学习分析依赖技术的进步、大数据研究和多学科协同。关键词:学习分析;学习分析和知识国际会议;文献分析 一、引言
学习分析已经成为炙手可热的研究领域,掀起了教育信息化的新浪潮(吴永和等,2013)。国际新媒体联盟(New Media Consortium)2011年发布的《地平线报告(高等教育版)》将学习分析技术列为远期或近期发展目标,并将其视为促进学习的关键技术。人们将学习分析理解为对学习者及其所在情境产生的数据进行测量、搜集、分析和报告,以便理解和优化他们的学习及所处环境(牟智佳等,2016)。学习分析在教育中的作用日益突显,使人们对学习发生和发展的认知更加明晰和透彻,对学习的监控和预警更加直观和便捷,为不同风格、不同认知水平的学习者提供精准服务和个性化学习支持。 为促进学习分析的创新与发展,学习分析研究协会(Society for Learning Analytics Research,简称SoLAR)自2011年开始举办学习分析与知识国际会议(International Conference on Learning Analytics and Knowledge,简称LAK),迄今已举办六届,为教师、教育管理者、研究人员及其他利益相关者搭建研究和交流的平台。2016年的会议信息见表一。本研究即对此次会议进行综述,以帮助国内同行了解学习分析研究前沿。二、研究现状 本次会议共收录会议论文62篇,其中长论文36篇,短论文26篇。通过对会议专题和论文的研究分析,本文将研究热点总结并归类为四个方面(见图1:模型与方法、技术与工具、实践与应用、伦理与道德。其中,模型与方法提供学习分析的方法和思路,指引学习分析的发展进程;技术与工具是不可或缺的具体手段,它的进步助力了学习分析的开展;实践与应用是学习分析的目标,它能检验技术与工具有效性并对模型与方法形成反馈从而促进其调整和优化。这三个模块相互支撑并形成迭代循环,都处于“伦理与道德”的约束之下,因为学习本身就是社会性活动,在关注学习进程的同时离不开对社会的人文关怀,以及遵守一定的法律和伦理道德规范。 (一)学习分析的模型与方法 1. 学习分析模型 学习分析模型是对学习分析过程和元素的抽象和概括。会议主要关注了四种学习分析模型,本文对这些模型进行了总结和比较(见表二),并对与会者的相关研究进行了梳理和阐释。
第一,贝叶斯知识追踪模型可以帮助指导智能导师系统的构建,为研究人员跟踪、了解学生学习提供参考。如何改进这一模型并应用于实践是本届会议关注的问题。大卫等人(David et al.,2016)对贝叶斯知识追踪模型进行优化后提出一种新的排序问题算法,以提升学生绩效和参与度。刘然等人(Liu et al.,2016)构建了一个知识组件跟踪模型,对引起常见错误和误解的潜在因素建模,并应用于分数算术案例中模拟误解强度的演变,评估每增加一个误解如何改善整个模型对数据的适应性。贝叶斯知识跟踪模型能对了解学生的知识掌握程度提供帮助,虽然它早在195年就被引入智能教育领域(王卓等,2015),鉴于其复杂性,国内相关研究少有涉及。 第二,预测模型对了解学习者的未来学习走向、提供决策支持和干预具有重要作用。帕尔多等(Pardo et al.,2016)提出的学习预测模型,可用于预测学生的考试成绩并进行分类,提供了具体的行动支持和相应的解决方案,从而实现对学生的个性化反馈和教师干预的有效支持。布朗等人(Brown et al.,2016)收集了566名学生第一年通识教育课程中与学业成绩相关的数据并进行分析,预测学生在预警系统中的潜在分类,以及学习成绩的提高和下降,从而实现对学生个性化反馈和教师干预的有效支持。帕尔多斯等人(Pardos et al.,2016)则从优化模型的角度进行研究。他们认为模型的学习属性和预测精度将随着先验知识的个性化而提高,并通过调查验证了控制个人先验知识可以减轻自我选择的偏差。虽然预测模型在实际应用中体现出优势,但预测精度和可信度仍有待考量,预测结果仅供参考。 第三,在学习满意度研究方面,目前国内学者对其实证调查较
文档评论(0)